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Abstract—Federated Learning (FL) has recently attracted
great interest in sensor-based human activity recognition
(HAR) tasks. However, in real-world environment, sensor
data on devices is non-independently and identically dis-
tributed (Non-IID), e.g., activity data recorded by most de-
vices is sparse, and sensor data distribution for each
client may be inconsistent. As a result, the traditional FL
methods in the heterogeneous environment may incur a
drifted global model that causes slow convergence and
a heavy communication burden. Although some FL meth-
ods are gradually being applied to HAR, they are designed
for overly ideal scenarios and do not address such Non-
IID problem in the real-world setting. It is still a question
whether they can be applied to cross-device FL. To tackle
this challenge, we propose ProtoHAR, a prototype-guided
FL framework for HAR, which aims to decouple the rep-
resentation and classifier in the heterogeneous FL setting
efficiently. It leverages the global prototype to correct the
activity feature representation to make the prototype knowl-
edge flow among clients without leaking privacy while solv-
ing a better classifier to avoid excessive drift of the local
model in personalized training. Extensive experiments are
conducted on four publicly available datasets: USC-HAD,
UNIMIB-SHAR, PAMAP2, and HARBOX, which are collected
in both controlled environments and real-world scenarios.
The results show that compared with the state-of-the-art FL
algorithms, ProtoHAR achieves the best performance and
faster convergence speed in HAR datasets.
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I. INTRODUCTION

TODAY, the popularity of cell phones and smart bracelets
has made them easier to collect sensor data, which has

greatly stimulated researches for sensor-based Human Activ-
ity Recognition (HAR) [1]. Due to its ubiquitous applications
in security, monitoring, health management, etc. [2], privacy
concerns are growing. As more countries are updating their
data protection laws, the privacy protection issue has recently
received great interest in HAR [2]. Generally speaking, the
higher one sensor’s inference potential, the less eager a person
is to release personal private data. Since each client performs
activities in a unique behavior style, adversaries might infer
user-sensitive information such as age and gender from the time-
series sensor data. Specifically, for deep learning models, its
black-box nature may inadvertently reveal user-discriminative
features. Due to privacy protection, data is typically distributed
among different devices, and the clients would be not willing
to send their own private data to a central server for training a
model, which inevitably restricts the activity recognition ability
of smart wearable devices.

This fundamental obstacle has been well addressed by Fed-
erated Learning (FL) [3], which is widely employed to tackle
above HAR challenges [4]. The FedAvg algorithm is first intro-
duced in [5], which leverages multiple clients to minimize the
local empirical risk via collaboratively learning a shared global
model without relying on raw data. Though FL has achieved
remarkable success in many areas, it still remains an important
challenge for heterogeneous HAR problem [4]. For example,
in the case of personalized cross-device FL [6] for HAR, the
sensor data from different clients stored in their personal mobile
devices usually requires electronic health records to be mined.
First, the sensor data recorded by different clients is usually in-
consistent, due to their behavior habits or physical characteristics
(e.g., age, gender, height). Second, there often exists label skew
across different clients [7]. For example, a cyclist might have
many cycling samples but few walking samples. This results
in data heterogeneity [8], [9], which makes the local optimal
points of clients be always inconsistent with the global optimal
point [10] (i.e., Client-Drift). Due to data inconsistency, FedAvg
does not guarantee convergence and only leads to suboptimal
performance. It has been proved theoretically [11] and exper-
imentally [9] that traditional FL does not work well in such
heterogeneous scenario. Thus, learning a global model may not
be ideal for the Client-Drift problem.
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Various studies have been conducted to address the problem
of data heterogeneity in HAR, primarily from two complemen-
tary perspectives: one is to improve the effectiveness of model
aggregation, where cluster FL is a popular method [12], [13]. In
cluster FL, the cloud server aggregates a handful of specialized
models for similar clients, which allows a trade-off between per-
sonalization and generalization to improve activity recognition
performance. However, there is a too strong assumption because
such methods usually require the participation of all clients so
as to obtain similarity information among them. Considering
the fact that mobile devices are often offline, it could not be
applied to wearable HAR tasks in the real-world scenario. The
other is to focus on stabilizing local training for personalization
by fine-tuning a single global model [14], [15]. However, this
strategy fails to take advantage of the underlying knowledge
among clients, whose diversity would potentially reveal interior
structure of local data and hence merits further research.

Inspired by the concept of prototype learning [16], we con-
jecture that averaging feature representations from different data
distributions on heterogeneous clients can form latent prototype
knowledge. For example, when different clients perform the
same walking activity, they usually have slightly distinct sensor
recordings of walking due to different behavior patterns caused
by gender, age, height, etc. In other words, their prototypes
from different clients would be slightly diverse for the same
activity category. Despite this, it is argued that these sensor
recordings might share a common walking prototype, which is
due to that the vast majority of those clients still share somewhat
similar characteristics for the same activity class. Intuitively,
exchanging those concept-specific prototypes among different
clients could enable them to obtain more knowledge about
the concept of walking. Motivated by this, in this article, we
present a novel prototype aggregation-based HAR approach
in heterogeneous FL scenario. Our main idea is to exchange
prototypes and a global representation network among clients
and a central server, which does not require model parameters
or gradients to be aggregated. In this case, different clients may
exchange information via sharing their prototypes, each of which
can be seen as one class by the mean value transformed from the
observed samples belonging to the same activity category. Since
the parameters of the local prototypes are not larger than that of
the classifier, ProtoHAR does not incur additional communica-
tion overhead compared to the current FL framework. Specifi-
cally, ProtoHAR learns a set of generalized global prototypes
derived solely from clients’ local activity prototypes. These
prototypes, which contain pooled knowledge from other peer
clients, are later broadcasted to all clients, escorting their own
local representation training over the latent space. To implement
a personalized model, our key idea is to minimize the empirical
risk of the classifier on the representation guided by the global
prototype. That is, a more robust representation naturally leads
to a better optimization direction for the classifier, which can
not only capture the common knowledge among clients but also
handle data heterogeneity. Overall, our main contributions can
be summarized as follows:

First, in this article, borrowing the concept prototype learning,
we propose a new prototype-based FL framework to tackle
challenging HAR problem with statistical heterogeneity, where
both prototypes and representations are transmitted between the

server and clients. To our knowledge, this paper is the first
prototype aggregation-based algorithm for activity recognition
in the heterogeneous FL scenario. In particular, prototypes are
utilized to refine the global representation so as to decouple
feature representation and classifier effectively.

Second, different from prior most works focusing on gradient-
based aggregation, the proposed algorithm requires no model
parameters or gradients to be aggregated. Instead, it exchanges
information via sharing prototypes and representations, where
each abstract prototype can be seen as an activity class by the
mean representations transformed from the observed samples
belonging to the same activity category. Compared to gradient-
based aggregation, aggregating the prototypes and representa-
tions can facilitate more efficient communication among hetero-
geneous clients.

Third, we perform extensive experiments by comparing our
proposed ProtoHAR with eight current state-of-the-art FL algo-
rithms on four public HAR benchmarks, which show that it can
significantly outperform other competitive FL baselines while
accelerating convergence and reducing communication burden
to a certain extent.

II. RELATED WORK

A. FL in Non-IID Scenario

In fact, FL has been a mainstream strategy to address current
challenges in privacy concerns [5], which could collaboratively
learn a shared model without requiring raw data collected from
users. During recent years, there has been a lot of recent re-
searches that focus on the communication challenges in FL
scenario with statistical heterogeneity, i.e., how to reduce the
communication cost. For example, Paragliola et al. [17] define
a novel FL strategy aimed at reducing the communication costs
through the transmission of a subpart of the local model instead
of the whole model. A comprehensive analysis is provided to
evaluate the trade-off between the communication cost and
performance. Zhao et al. [18] propose a data-sharing strat-
egy to improve FedAvg with Non-IID data via distributing a
small amount of globally shared data containing examples from
each class, which leads to a trade-off between centralization
and accuracy. Duan et al. [19] introduce a self-balancing FL
framework named Astraea to handle the class imbalance issue
through run-time data augmentation. However, these previous
works have not considered the issue caused by an increasing
size in continuous data over time, and little effort has been
devoted to such non-stationary data stream. To address the
issue of continuous learning, Paragliola et al. [20] for the first
time extend a variant of previous FedAvg algorithm in a non-
stationary scenario, and then investigate the extent to which
the catastrophic forgetting problem cause by dynamic clients
in the FL setting. In fact, such statistical heterogeneity among
multiple client nodes always remains an important challenge
for HAR in the FL scenario. Most prior works [5], [8], [10],
[21] primarily focus on the sole heterogeneous scenario, all of
which are based on an idea of gradient aggregation, hence raising
concerns about communication efficiency and gradient-based
attacks. In general, the concept of prototypes [16] (i.e., the
mean of multiple features) has been widely used to resolve
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image classification problem with a limited number of train-
ing examples. Intuitively, the learning scenario is in well line
with the latent assumption of a cross-client FL setting, where
each client only has a limited number of activity samples to
train a personalized model independently for the desired HAR
performance. However, prototypes have been rarely explored in
a large variety of HAR tasks. Different from prior most works
focusing on gradient-based aggregation, we primarily seek to
combine prototype aggregation and representation learning for
HAR in such heterogeneous FL setting.

B. FL on Human Activity Recognition

During the past decade, several mainstream deep neural net-
works such as convolutional networks, LSTM, residual net-
works, and autoencoders [2], [22], [23] have been widely applied
to address sensor-based HAR problem. However, prior most
works primarily focus on training a single global model by
aggregating raw data from all clients in a central server, which
lack privacy protection and personalization for each client [2].
FL has been employed in wearable HAR to distribute the training
process of the model to all participating devices [12], [13], [14],
[15], [24]. Xiao et al. [25] design a perceptive extraction net-
work (PEN) for HAR, which combines the federated averaging
algorithm to improve the performance of PEN. By building two
models, i.e., a deep neural network and a softmax regression,
Sozinov et al. [4] apply FL to train two HAR classifiers and
compare their performance to centralized learning. However,
the aforementioned works are impractical in real-world scenario
since they neglect that the client devices might adapt to the user
behavior and habit due to personalization, which is a crucial part
of HAR [26]. To address this challenge, Chen et al. [14] adopt
a transfer learning method on client side to improve person-
alization for Parkinson’s disease auxiliary diagnosis. Ouyang
et al. [12] propose a multi-task federated clustering method
called ClusterFL for HAR, which allows similar nodes for
collaborative learning. Wu et al. [15] propose FedHome by
designing a generative convolutional autoencoder to reconstruct
a class-balanced dataset, which is used to fine-tune the activity
recognition model on edge device. However, this method still
requires a large number of communication rounds to obtain a
stable global model, and the clients cannot be personalized at
an early stage during the FL process. Those approaches are still
based on a single global model without exploring how to decou-
ple representation and classifier to address the Non-IID problem
more efficiently and effectively, meanwhile bringing additional
memory consumption, which cannot be directly applied to tiny
wearable devices in the scenario of IoT (Internet of Things).
In addition, prior most works assume that all clients participate
in training during each communication round, which does not
consider overall communication efficiency in real-world scenar-
ios. Compared to existing FL methods in HAR, ProtoHAR first
proposes an efficient prototype-based solution without excessive
communication burden and memory footprint, which improves
the representation quality of activity features, thus achieving
higher accuracy for personalized classifiers in HAR tasks.

C. Prototype Learning

Prototypical Network(PN) [16], [27] takes the mean feature
as the class prototype and leverages Euclidean distance to

Fig. 1. Backbone classification network for HAR.

restrict data points to their nearest prototype in an embedded
space. Prototypes have been widely employed in various image
classification tasks [28], [29]. In this article, we utilize the
concept of prototypes to describe the fundamental characteristics
of activity classes, and then employ it to solve heterogeneous
HAR problem. Prototype-based solution is primarily used in a
scenario with the number limited samples, which is consistent
with the latent assumption of cross-device FL: one client has
no enough samples to train deep models. This assumption is
widely supported in FL-based benchmark datasets [7], [30] and
has been validated in HAR area [12], [15]. In particular, Cruciani
et al. [31] have proposed a new personalization approach for
HAR by combining an idea of semi-population for user adapta-
tion. Specifically, a subset of clients is first identified as the best
candidates from the available population so as to initialize one
classifier for the target client, and then a semi-population neural
network classifier is trained over data from the subset of clients.
Finally, personalizing activity recognition could be realized
by fine-tuning the classifier’s weight parameters over a small
amount of labeled data from the target client. Different from
such a semi-population approach, our work is primarily built on
an idea of prototypes. However, it can be further combined with
the proposed semi-population solution by identifying a subset of
prototypes as potential candidates from the available population,
which has a potential to reduce the number of labeled data
required for personalization while improving communication
efficiency in such heterogonous FL setting.

III. THE PROTOHAR FRAMEWORK

A. Network Architecture

As shown in Fig. 1, the backbone classification network
consists of three convolutional layers, two max-pooling layers,
two fully connected layers, and one softmax layer, which has
been widely utilized in HAR area due to its powerful ability in
extracting features automatically from raw sensor data [2], [14].
Generally speaking, such deep model can be seen as two separate
parts: 1) representation layers (a.k.a. embedding functions) used
to extract representation vectors from raw input. 2) decision
layers are used to make a classification decision for a given
representation vector. For convenience of notation, the former
is denoted as Representation Net φ while the latter is called as
Classifier h.

B. Problem Setting

Standard federated Learning: Suppose there are N clients,
denoted as C1, . . ., CN . Client Ci has a local private dataset Di

drawn from Pi(x, y), where x and y represent the input features
and related class labels, respectively. Our goal is to learn a better
global modelw over the datasetD =

⋃
i∈[N ] D

i with the help of
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a central server, where the private data are not exchanged. The
objective is to solve:

min
w

L (w) =

N∑
i=1

∣∣Di
∣∣

|D| Li(w), (1)

where Li(w) = E(x,y)∼Di [�i(w; (x, y))] is the empirical loss of
Ci. To avoid privacy leakage, all clients are restricted to share
their raw data with each other. FedAvg [5] is proposed to coordi-
nate multiple clients to collaboratively train a global model in a
central server while preserving data privacy. In FedAvg, during
each communication round, n clients are selected to optimize
their local models on local data, and then the server utilizes the
local model parameters

∑n
i=1 θi sent by the subset of clients to

update the global model w:

w =

n∑
i=1

|Di|
|D| θi. (2)

However, this would yield a solution that performs worse in
heterogeneous setting where the data distribution Di varies
across clients. Indeed, several researches [7], [9], [10] argue
that heterogeneous datasets lead to Client-drift in standard FL
setting, where multiple local updates in heterogeneous setting
push each client apart from the global optimum, hence under-
mining performance. Therefore, learning a shared model w may
not provide a good solution to Problem (1).

Learning a Global Representation: From a new perceptive
of FL [32], the heterogeneous data distributed across clients can
share a common representation despite different labels. Through
this shared (low-dimensional) representation, it is much easier
to predict the labels for each client using either a linear classifier
or a shallow neural network [32], [33].

Formally, we consider a setting consisting of a global repre-
sentation net φ : Rd → R

k, which maps data points into a low-
dimensional representation space k, and classifier hi : R

k →
Y Q, that maps from the low-dimensional representation space k
to the label space Q. We use Ri(φ) to denote the representation
parameterized by φ, and a prediction for x can be generated
by the function Gi(hi) parameterized by hi. So the model for
the i-th client can be written as Fi(φ, hi) = (Ri(φ) ◦Gi(hi)).
Critically, k � d means that the number of parameters each
client needs to learn locally would be modest. As a result, we
can assume that any client’s optimal classifier for any fixed
representation is easy to compute, which motivates the following
re-written global objective:

min
φ

N∑
i=1

|Di|
|D| min

hi

Li(φ, hi), (3)

where Li(φ, hi) = E(x,y)∈Di
�i(φ, hi; (x, y)) is the local empir-

ical loss on client i’s local datasetDi. Clients collaborate to learn
the global representation network φ using all clients’ data in our
proposed method, while learning their personalized classifier hi

using own local data.
Prototype Definition in HAR: To restrict the deviation of the

optimization direction, inspired by [10], [34], our algorithm aims
to refine the representation training with the prototype of each
activity class to alleviate the inconsistency between the local
optimum and the global optimum.

Given that there is a set of activity prototypes P =
{P (1), P (2), . . .}, we define a prototype P (j) to denote the j-th
activity class in P. For the i-th client, the prototype knowledge
will be aggregated from the representation vectors in activity
class j:

P
(j)
i =

1

|Di,j |
∑

(x,y)∈Di,j

Ri (φi;x) , (4)

where x and y denote the training sample and its corresponding
label respectively. That is to say, Di,j is comprised of training
activity instances belonging to the j-th class in local dataset Di.
For instance, the local datasets Di and Dk owned by two clients
i and k might have different label distributions. Thus, above (4)
is used to calculate the prototype P (j)

i ∈ R
k for the j-th activity

class in client i by averaging all representations corresponding
to that class. It is common for an activity classification program
installed in mobile clients, in which the central server has to
maintain the overall activity prototypes P = {P (1), P (2), . . .},
while each client only needs to predict a few activity classes
constituting a subset of P. As shown in Fig. 2, the activity class
set held by different clients would potentially vary, but allow an
overlap between them.

Since the prototypes are computed by averaging feature vec-
tors, the intra-class bias may exist between the actual computed
prototypes based on sparse samples and the expected proto-
types [27]. To resolve this problem, we provide an alternative
version called Reweighted Prototype:

P
(j)
i =

K∑
k=1

δ
(j)
i,kRi,k (φi;xk) ,

δ
(j)
i,k =

exp
(
ε · Sim

(
R

(j)
i,k , P

(j)
))

∑K
k=1 exp

(
ε · Sim

(
R

(j)
i,k , P

(j)
)) , (5)

where δ is the weight indicating the relation between the local
representations and the global prototypes. ε is a scalar parameter
andSim denotes cosine similarity. The more similarR(·) is toP ,
the more weight is assigned to R(·). Equation (5) may be more
stable than (4) in above scenario, but (4) is cheaper to compute
and usually suffices practical requirement (thus all our experi-
ments execute (4)). We will discuss (5) in ablation studies later.

C. Motivation

The scenario that different users have heterogeneous data
distribution in label is omnipresent in HAR area. For example,
a subject Ci who likes sports would more likely spend more
time in jogging or cycling than a sedentary subject Cj . In
particular, the private model would suffer from severe perfor-
mance degradation on other domains with noticeably different
distributions. As a result, learning a generalizable representation
under Client-drift is technically challenging in HAR. This article
is inspired by [10] that mitigates client-side drift with the help of
correction vectors, as well as [21], [34] that employ contrastive
learning and prototype learning respectively to close the gap
between local and global representations. Intuitively, the models
trained on an entire dataset restrict the distance between the local
feature representations and the global prototypes, which can
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Fig. 2. Overview of the the ProtoHAR framework.

better extract activity feature representations than those trained
on skewed subsets for heterogeneous HAR problem, while
preserving personalized classifiers based on more generalized
feature extractor so as to approximate local data distributions.
Therefore, we explore how to decouple the representation and
classifier for HAR more effectively in heterogeneous FL setting.

D. Proposed Method

Based on above intuition, we propose ProtoHAR, which
aims to obtain a better global representation for improving the
robustness of heterogeneous HAR by aggregating more generic
activity prototypes. An overview of the proposed framework is
shown in Fig. 2. The central server receives local representation
networks φ1, φ2, . . ., φm and local lightweight prototype sets
P1, P2. . ., Pm from m local clients, and then aggregates the
global representation network and global activity prototypes,
respectively. Specifically, during the local training phase, we de-
couple the entire training process into two steps (see the right part
in Fig. 2). First step: the global representation is integrated into
the local model to alleviate the risk of overfitting, only updating
the classifier to keep the model fit for the local distribution. Sec-
ond step: to obtain more discriminative representations, we train
the representation network after freezing the classifier while
restricting the distance between the local representations and
global prototypes. Moreover, our algorithm maintains a lower
communication cost than FedAvg [5] because the transmitted
prototypes are more lightweight, whose number of parameters
is k × q(∀q ∈ [Q]), smaller than that of classifier (k ×Q) in the
FedAvg model. We will detail how ProtoHAR addresses such
data heterogeneity problem by combining personalization and
prototype learning.

Objective in ProtoHAR: The objective of ProtoHAR is to
jointly optimize a distributed learning problem and improve
the personalization ability of individual classifiers by utilizing
global prototypes as penalty terms in a heterogeneous HAR
scenario. The server and clients attempt to learn the parameters
of the global representation and the global prototype knowledge
collaboratively, while the i-th client aims to learn its unique

local classifier (Fig. 2). The objective of our method among
heterogeneous clients can be formulated as:

F = min
φ,{P̄ (j)}|P|

j=1

N∑
i=1

min
hi

|Di|
|D| Li (φ, hi)

+ λ ·
|P|∑
j=1

N∑
i=1

|Di,j |
Dj

LR

(
P̄ (j), P

(j)
i

)
, (6)

where Li is the typical empirical loss (as defined in (3)), and
LR is a penalized term that measures the distance (we use L2

distance [16]) between a local activity prototype P
(j)
i and the

corresponding global activity prototypes P̄
(j)
i . λ is a hyper-

parameter that controls the penalized term. Here Dj belongs
to the total number of samples of the j class from the selected
clients, while Di,j is the number of instances belonging to class
j in the i-th client. The overall federated learning algorithm is
shown in Algorithm 1.

Updating the global parameters: Similar to FedAvg, the
server performs a weighted average of the corrected local
parameters to obtain the global representation parameters:

φ =

m∑
i=1

|Di|
|D| φi, (7)

wherem denotes the number of selected clients. Under such het-
erogeneous setting, some clients might have no enough training
samples to obtain informative knowledge for a certain activity.
ProtoHAR can aggregate prototype knowledge from different
clients to produce a more generalized activity prototype. During
local training, the client is trained close to the global activity
prototype, which implies that when the training samples of a spe-
cific activity are insufficient for the client, the global prototype
corresponding to that activity can be utilized to capture knowl-
edge provided by other clients. Hence, the global representation
network, that is aggregated from local representation networks
and penalized by the global prototypes, will be more robust and
can greatly alleviate the heterogeneous HAR problem.
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Algorithm 1: The ProtoHAR Framework.

For a given activity class j, the server receives prototype
sets from m clients with different data distributions. After the
prototype aggregation operation, a global prototype P̄ (j) is
generated for each activity class j,

P̄ (j) =
1

m

∑
i∈m

|Di,j |
Dj

P
(j)
i , (8)

where P
(j)
i represents the prototype of activity j from client i.

For example, given that the current subset contains client C1

and client C2, each of them has a walking activity prototype
P

(walking)
i computed via (4) or (5). Due to these limited

feature vectors in aggregation, the walking prototype would pose
a certain limitation. However, if the two clients upload their
respective prototypes to the server, we could aggregate walking
prototypes using (7), resulting in a global prototype P̄ (walking)

with stronger representational capability.
Updating the local model parameters: During each round, m

clients are selected to participate in local training. In the local
training, client ifirst executesEh local gradient-based updates to
solve its optimal classifier given the current global representation
φ communicated by the server. In particular, the loss function in

this process is defined as follows:

Fh = min
hi

Li (φ, hi) , (9)

where Li(·) is a standard cross-entropy loss for client i.
Next, the client i executes Eφ local updates for its represen-

tation net φ, while a regularization term LR(·) is added to the
local loss function by penalizing the distance between the local
prototype P

(j)
i and the global prototype P̄

(j)
i so as to obtain

a better representation net. Specifically, for client i(∀i ∈ [N ])
the local objective of φi is to minimize the following objective
function:

Fφ = min
φi

Li (φi, hi) + λLR

(
P

(j)
i , P̄

(j)
i

)
, (10)

where λ is an important hyper-parameter that controls the weight
of LR(·) loss. LR can be considered a distance metric so that
this function can take various forms, such as Cosine distance,
L1 distance, and L2 distance, etc.

E. Convergence Analysis

Overall, we borrow an idea from FedProto [34] to learn a
personalized HAR model for each client with convergence guar-
antee. Different from FedProto, besides a personalized classifier
h, the local model of each client also contains the shared global
feature extractor φ, where the overall model is parameterized by
θ. As φ and h are highly correlated, jointly optimizing them is
very difficult. Instead, we can fix h and concentrate on analyzing
the convergence of φ, since the first step of local training is only
simply updating h and not involved in too much complexity.
Thus, our approach can be seen as a special case of FedProto in
HAR, which still inherits its convergence properties under the
relatively mild assumptions. Sharing a similar assumption to [8],
[34] in deriving its convergence bound, our method can enjoy the
same convergence guarantee. Upon this observation, assuming
that each client’s local objective function ( (10)) is L1-Lipschitz
smooth bounded in [0, G] and each local embedding function
is L2-Lipschitz continuous, we formulate the local convergence
(i.e., one-round deviation) of Algorithm 1 in non-convex setting
as follows:

E
[
Fφ,(t+1)Eφ+1/2

] ≤ Fφ,tEφ+1/2+
L1Eφβ

2

2
σ2+λL2βEφG

−
(
β − L1β

2

2

) Eφ−1∑
e=1/2

∥∥∇Fφ,tEφ+e

∥∥2
2
, (11)

which indicates the deviation bound of the local objective func-
tion for an arbitrary client after every communication round,
where both e ∈ {1/2, 1, 2, . . . , Eφ} and t denote the local iter-
ation for φ and the global communication round, respectively.
Here tEφ represents the time step before prototype aggregation,
while tEφ + 1/2 represents the time step between prototype
aggregation and the first iteration of the current round. G and σ2

denote the bounded expectation and variance of the stochastic
gradient. As a result, convergence may be guaranteed because
there is a certain expected one-round decrease, which could be
obtained via tuning proper values for the learning rate β and the
importance weight λ. A more detailed proof and analysis can be
found in [34].
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TABLE I
STATISTICAL INFORMATION OF DATASETS

IV. EXPERIMENTS

A. Benchmark Datasets

We choose four public benchmark datasets for our evaluation
in heterogeneous HAR scenario, which are collected by var-
ied sensor modalities such as accelerometers and gyroscopes.
To maintain the consistency with previous literature [35], the
same data preprocessing such as noise filtering, normalization,
and sliding window is carried out on raw sensor data. Table I
summarizes the details of these datasets.

PAMAP2 [36]:The dataset is made up of sensor recordings
obtained from nine volunteers who were asked to participate
in 18 physical activities, including 12 protocol activities (cy-
cling, walking, rope jumping, and so on) and a few alternative
activities (car driving, playing soccer, watching TV, and so on).
Each volunteer wore three Colibri wireless inertial measurement
units(IMUs), which were attached to each dominant’s chest,
hand, and ankle. For further analysis, the sampling rate of 100 Hz
is downsampled to 33.3 Hz.

USC-HAD [37]: This dataset is designed to serve as a bench-
mark for evaluating different algorithms, notably in healthcare
scenarios such as elder care and health monitoring. There are
12 physical activities (lying, walking, sitting on a chair, etc.)
collected from 14 subjects. The sampling rate is 100 Hz.

UNIMIB-SHAR [38]: This is a newly-built acceleration sen-
sor dataset from the University of Milano Bica used to monitor
human activities and detect falls. The scientists recorded the
interesting activities from 30 volunteers with ages between 18
and 60 by using an Android smartphone at a sampling frequency
of 50 Hz. All samples are divided into two broad categories: eight
types of falls and nine types of activities of daily living (ADLs).

HARBOX [12]: This is a large-scale dataset built specifically
for the FL-based HAR tasks, which includes 5 types of ADLs:
phone calls, walking, hopping, typing, and waving, which are
performed by 120 subjects with ages between 17 and 55. All
sensor readings are recorded by the 9-axis IMUs embedded in
77 different brands of smartphones and resampled into 50 Hz.
As indicated, HARBOX is highly heterogeneous to serve as a
benchmark dataset for evaluating various FL algorithms.

B. Baselines

We compare our algorithm with eight state-of-the-art FL
baselines in Non-IID setting: SOLO: Select all clients for lo-
cal training without using FL(i.e., the computational cost is
ignored); FedAvg [5]: The original federated averaging algo-
rithm selects a subset of clients for local training during each
round to ensure communication efficiency while sharing a global
model; FedProx [8]: Based on FedAvg, a regularization term

is added to restrain the distance between the local and global
model; MOON [21]: The local update is corrected by maxi-
mizing the consistency between the representation learned by
the local model and the representation learned by the global
model; FedProto [34]: Based on prototype learning, a regu-
lar term is added to align features when optimizing the local
model; LG-FedAvg [39]: Preserve a compact local representation
on each client while learning a global model on all devices;
SCAFFOLD [10]: This method corrects local updates by adding
drifts to the local training; FedHome [15]: The global model
is obtained through FedAvg, and the balanced dataset is gener-
ated to fine-tune the local model; FedRep [32]: Learn a shared
representation and a unique local head for each client.

C. Implementation Details

Our algorithm and all the baselines are implemented using
Pytorch with python 3.6, trained on a single NVIDIA GeForce
RTX 3090 GPU. Unless otherwise mentioned, we randomly
sample 15% clients during each round for communication
efficiency. In particular, SOLO selects all clients to achieve
the highest performance that local clients can attain without
FL. For fair comparisons, we use the same setting on each
dataset for all experiments. We train overall 300 communication
rounds for all datasets to ensure the global model can converge
stably, and the local training epoch is set to 5. All methods use
the same backbone classification network in Fig. 1. Models are
trained using a SGD optimizer with momentum 0.9. Different
datasets utilize various learning rates α (Table I) to ensure
global convergence. Mini-batch size B is 32 for all methods,
and personalized learning rate β is 10−2 in local updating.
For the regularization terms in the partial baselines, we utilize
the default hyper-parameters from the original articles, from
which we select the regularization term coefficient with the best
performance on four HAR datasets. We implement the publicly
released code for all baselines. Meanwhile, our code is available
at1

In fact, most existing HAR benchmark datasets have been
mainly collected in a controlled situation without significant
dynamics, which actually do not suffer from heterogeneity in
both label and signal distribution. This is not consistent with
the real-world scenario, in which the clients might be highly
diverse. Without heterogeneity, FL would always lead to a close
performance to a centrally trained model. How to construct data
heterogeneity in both label and signal distribution remains an
important challenge in FL-based HAR. To address this issue, Li
et al. [33] have empirically verified the presence of heterogeneity
across clients even for the same activity. In particular, following
the same strategy introduced in [4], [33], we randomly remove a
subset of activities (i.e., two activity classes) for each client from
its local dataset so as to mimic the real-world scenario, which
forces these public datasets to follow a Non-IID distribution
among clients. Thereafter, these public datasets would have
heterogeneity according to both label and signal distribution. It is
worth noting that our main goal is to learn a personalized model
for each client, which can solve local HAR problem. In such
heterogeneous FL setting, referring to previous literatures [4],

1[Online]. Available: https://github.com/cheng-haha/ProtoHAR.
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TABLE II
MAIN RESULTS

Fig. 3. Test accuracy curves trained by partial participation of all clients during each communication round.

[12], [24], each subject of the aforementioned public HAR
datasets can be treated as a client with its own local data, leading
to different clients. To be specific, each client’s local dataset can
in turn partitioned randomly into a training set (70%) and a
test set (30%), used to evaluate the model performance of each
client. Because different clients have heterogeneous label distri-
bution (Non-IID or imbalance), we introduce three widely-used
metrics: Macro-F1, Accuracy, and AUC (Area under the ROC
Curve) for our evaluation. On this basis, the model performance
is evaluated with the mean prediction metrics [33], which can
be defined as follows:

Metric =
1∑N

i=1 mi

N∑
i=1

mi ∗ Ei,E ∈ {Acc, F1, AUC},
(12)

where, mi denotes the number of test samples on client i. Over-
all, the evaluation methodology is more reasonable by treating
each subject within public datasets a client with its own local
dataset.

D. Comparison With State-of-The-Art Methods

Table II reports the quantitative results of our algorithm and
current state-of-the-art baselines on four benchmark datasets
in terms of three metrics. Initially, we experiment on three
random seeds (i.e. 0,1,2) and average the results. Overall, the
proposed ProtoHAR method outperforms all baselines in all
metrics, demonstrating that our model can effectively address

TABLE III
THE COMMUNICATION ROUNDS IN DIFFERENT METHODS TO ACHIEVE THE

SAME TARGET ACCURACY

data heterogeneity in HAR. We attribute this to the transferred
knowledge with enhanced generalization capability by correct-
ing global prototypes in each local representation. Under such
heterogeneous setting, SOLO (local training without FL) shows
much worse accuracy than partial FL baselines, leading to rel-
atively low accuracy for all clients. This suggests the necessity
of FL in HAR. In addition, the lower performance caused
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by traditional FL baselines proves that they do not solve the
heterogeneous HAR problem, which indicates the advantage of
our ProtoHAR. Table III compares their convergence speeds on
three public HAR datasets and Fig. 3 presents the test accuracy
curves when training all FL algorithms. We further detail them
on each dataset:

Evaluation on PAMAP2: 1) Since PAMAP2 inherently con-
tains unbalanced data distribution among clients, traditional FL
baselines suffer from data heterogeneity and do not converge
well. Our method outperforms the best baseline, i.e., FedHome
(above 4.107%, 8.06%, and 4.074%) in the three metrics. 2) As
one can see from Fig. 3(a), ProtoHAR yields the most rapid
learning curves to achieve the desired performance and outper-
forms other baselines, e.g., as shown in Table III, ProtoHAR
requires only 53 communication rounds to achieve the best ac-
curacy that FedAvg takes 280 rounds to reach. That is, ProtoHAR
converges nearly 5.28× faster than FedAvg. Similarly, it is 4.7×
faster than FedRep.

Evaluation on UNIMIB-SHAR: 1) Regarding UNIMIB-
SHAR, SOLO has a higher metric score. We attribute this to
the fact that each client’s local data is sufficient to learn partial
activity classes well. In contrast, FedAvg has more complex
optimization objectives, and the aggregated global model fails
to address such data heterogeneity among clients. Hence it ex-
hibits worse performance. As shown in Fig. 3(c), our algorithm
performs the best and significantly outperforms SOLO, which
we attribute to the reason that the prototypes can better guide the
local training to learn more knowledge. 2) Our method achieves
a remarkable performance improvement (over 3.703%, 4.728%
and 0.742%) in three metrics and greatly exceeds FedAvg,
FedProx, and MOON in F1-score (over 8%).

Evaluation on USC-HAD: 1) It can be found that LG-FedAvg
shows a clear decline trend in accuracy. Though sharing a single
global classifier leads to a smaller memory footprint, we argue
that it could not alleviate the overfitting problem well. 2) Regard-
ing other baselines, FedProx achieves the best Accuracy (i.e.,
71.320%), while FedRep obtains the best Macro-F1 score (i.e.,
65.842%), and MOON obtains the best AUC performance (i.e.,
91.381%). These methods do not yield a consistent improvement
across all metrics. In comparison, our method produces higher
metric scores and achieves an Accuracy of 76.416% (5.096%
gain), a Macro-F1 of 71.714% (5.872% gain), and an AUC of
96.518% (5.137% gain). 3) Table III shows that our method
can lead to an acceleration of convergence by 2.72× and 1.97×
compared with FedAvg and FedRep, respectively. 4) We notice
that Tan et al. [34] have recently proposed the concept of proto-
type learning to address data heterogeneity in such FL setting.
Though their FedProto has claimed decent performance in mul-
tiple image classification tasks [34], it still remains a question
whether it can be directly applied in HAR area. Unlike image
data, besides Non-IID label distribution in HAR environment,
different clients might have heterogeneity in signal distribution
even for the same activity. Inspired by above analyses, the feature
alignment is first embedded into the framework of prototype
learning. We compare the FedProto with our method in the same
experimental setting. As shown in Table II, it can be observed
that only sharing global prototypes without the shared global
feature extractor is not enough and even causes substantial
performance degradation, which indicates the FedProto alone

does not work well for the HAR problem. For example, one can
clearly observe an accuracy reduction of FedProto compared
to our approach from over 76% to below 63% on USC-HAD.
The experimental results verify the contribution in the part of
feature alignment, which are consistent with our intuition so
that we can better understand why the feature alignment does
make sense here for HAR problem due to the heterogeneity in
signal distribution.

Evaluation on HARBOX: 1) Our method also outperforms the
best baseline, FedRep (above 6.619%, 6.828%, and 4.011%) in
the three metrics. It can be observed that FedHome achieves
the second-best result among all baselines. However, it is still
based on a single global model, which does not consider the data
heterogeneity problem among clients at an early stage during
the FL process. 2) HARBOX is a large-scale dataset containing
120 users, where a relatively small number of activity classes
leads to more severe data heterogeneity. As Table II shows: the
traditional FL algorithms do not bring a significant accuracy
improvement to the clients, while our algorithm achieves the
best performance due to the flowing activity prototypes among
clients, which empirically validates that our approach can im-
prove personalization for each client in a large-scale scenario.

Visualization Analysis: T-SNE is utilized to visualize three
fine-grained activity categories (walking forward, walking left,
walking right) on the USC-HAD test set in a 3-dimensional
space. As shown in Fig. 4, it can be seen that the feature
representations learned by SOLO, FedAvg, and FedRep are
difficult to distinguish, which results in a loss of generalization
ability on heterogeneous clients. Our method shows a clear
separation, which verifies our motivations that our ProtoHAR
could benefit from the global prototype knowledge flowing
among local clients, which alleviates the disparity of underlying
data distribution among clients. This knowledge is otherwise not
accessible through other baselines such as FedAvg or FedRep.
Moreover, comparing to Fig. 4(c) and (d) visually demon-
strates that modifying local representation based on prototypes is
more beneficial for learning client-shared activity features than
directly embedding all activity instances from heterogeneous
clients into a common representation space. Based on the fact
that ProtoHAR effectively alleviates the insufficiency of local
activity knowledge by embedded global activity prototypes, it
can efficiently optimize the objectives and result in accelerated
convergence speed, while requiring at most one-half as overall
communication rounds as FedAvg. In particular, as aforemen-
tioned, our approach also saves transmission cost and compu-
tation overhead, which proves that it can well address the data
heterogeneity problem and enable fast personalization for each
client in HAR scenario.

E. Ablation Studies

Effects of major components: To prove the effectiveness
of PCR (Prototypes Corrects local Representation), we use
W.O.PCR to denote the variant that does not use prototypes to
correct representation. To demonstrate the effectiveness of SCR
(Solve for the optimal Classifier on global Representation), we
use W.O.SCR to denote the variant that does not share the global
representation but share the global model. On USC-HAD, Fig. 6
shows that both W.O.PCR and W.O.SCR perform worse than
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Fig. 4. T-SNE visualizations of representation vectors. Different colors represent different categories.

Fig. 5. Effection of λ.

Fig. 6. Ablation experiments on different variants.

ours across most clients, which suggests that our method greatly
boosts the performance for most clients, hence validating our
motivation to leverage prototypes to guide local representation
in personalized training.

Effects of hyper-parameters: In this part, we evaluate the two
main hyper-parameters, λ and Eφ/Eh, in ProtoHAR. Fig. 5

Fig. 7. Effection of alternating update ratio.

shows the convergence rate of ProtoHAR trained on four HAR
datasets with different λ. It can be seen that too large λ will
hurt the performance of ProtoHAR, which causes ProtoHAR
to diverge. Therefore, λ should be properly tuned. We set
λ = 10.0, 1.0, 1.0, 1.0 for PAMAP2, UNIMIB-SHAR, USC-
HAD, and HARBOX in all scenarios, respectively. As alter-
nating update ratios Eφ/Eh represents the level of corrected
representation φ, Eφ/Eh can also be considered as a crucial
hyper-parameter in ProtoHAR. In Fig. 7, fixing the number of
local epochs at 10, we analyze the impact of different ratios on
performance. The increase in the number of Eφ indicates that
the network has stronger feature extraction capability, which
may lead to accuracy improvements in both cases. Our method
achieves the best results across all ratios, compared with
FedRep, which adopts an alternating update strategy as well.
Our algorithm performs better as Eφ increases, which proves
that the global representation obtained with more prototype
correction is more informative. For fair comparisons, we choose
Eφ/Eh = 7/3 with the best performance in FedRep as our
default setting. If higher performance is desired, ProtoHAR can
utilize 9/1 to adjust the local training dynamically.

Effects of different strategies for aggregating prototypes: We
assume that aggregating prototypes on sparse samples are inad-
equate and propose reweighted prototypes using (5) to amend
the bias. As shown in Table IV, we can let ProtoHAR (+ RP)
get a slight rise in Accuracy and Macro-F1 by adjusting the
scale parameter ε. The results show that reweighting strategy
yields a better prototype to guide local training for USC-HAD
dataset. Although the performance boost is not significant for
PAMAP2 dataset, it just proves that aggregating global proto-
types can help to eliminate differences between local prototypes
on clients. That is to say, when a certain type of prototype lacks
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TABLE IV
ABLATION STUDY OF OUR REWEIGHTED PROTOTYPE METHOD (+ RP) IN

TERMS OF DIFFERENT ε AGAINST PROTOHAR

Fig. 8. Performance on different data splits.

Fig. 9. Effection of α.

enough knowledge, the prototype can bridge the gap through
aggregating the more informative prototypes from other clients.

F. Robustness Analysis

Robustness on heterogeneous data: A more heterogeneous
or imbalanced data would significantly slow down model con-
vergence [11]. Fig. 9 shows different pathological splits: α =
0, 2, 5, 7. Theα indicates the number of deleted categories. It can
be seen that when α = 0, the data distribution of USC-HAD is
IID, while the larger α, the larger the difference between clients,

Fig. 10. Robustness analysis.

i.e., stronger heterogeneity. As shown in Fig. 8, it can be found
that our method maintains strong robustness against different
data splittings, the more heterogeneous the data distribution,
the better the personalization of our approach, which may be
because the unique classifier trained on the prototype-guided
representation can better adapt to the local distribution. On the
other hand, when the data is IID (α = 0), the accuracy of the
personalization method FedRep decreases while that of FedAvg
that is sensitive to heterogeneity increases, and ProtoHAR is
superior to these two methods, which indicates that our method
can strike a better balance between personalization and gener-
alization.

Robustness on different local epochs: Fig. 10(a) shows the
effect of the number of local update epochs on USC-HAD. As
the number of local epochs increases, our approach outperforms
several competitive baselines. We attribute this to an enhanced
generalization ability of prototype-guided local representations,
where the local classifier trained on the aggregated global rep-
resentation can better recognize potential target activities.

Robustness on different client numbers: We conduct exper-
iments to analyze the robustness of ProtoHAR by limiting
different numbers of clients from the HARBOX dataset to
participate in the training process. We report the model accuracy
in Fig. 10(b). Our method consistently achieves the best perfor-
mance, which implies that it can be applicable in a large-scale
HAR scenario.

V. CONCLUSION

FL has substantial obstacles to HAR due to the presentence
data heterogeneity in label and signal distribution among clients.
In this article, we propose a novel FL framework named Pro-
toHAR, which aims to decouple representations and classifiers
to mitigate the above problem more efficiently and effectively.
ProtoHAR leverages the global activity prototype knowledge
flowing among different clients to correct local representation.
Based on the improved representation, the user-specific classifier
is optimized to make it more discriminative for personalized
HAR. Extensive experiments on four public HAR datasets have
demonstrated the effectiveness of the proposed framework in
both classification performance and communication efficiency.
ProtoHAR can be applied to many real-world HAR scenarios
to build accurate personalized activity classification models for
mobile users without collecting raw sensor data in a central
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server. In essence, the proposed ProtoHAR is a stationary so-
lution, which assumes that the activity data distribution always
remains the same or unchanged. In practice, activity data usually
tends to flow and increase in terms of size over time. Thus, it is es-
sential to refine the prediction model since deep neural networks
have to continuously learn new activity data in a non-stationary
scenario [20]. However, ProtoHAR is not able to continuously
learn new activity data, which needs to be retrained from scratch.
This is unrealistic for deep models because of the high cost dur-
ing training process. On the other hand, the continuous learning
can help to dynamically learn new knowledge from new activity
instances, which could properly address the changes in data
distribution. To our knowledge, the concept of prototypes has
not been fully considered in a non-stationary scenario. In a future
study, we plan to extend the concept of prototypes from another
perspective of continuous learning, which handles a continuous
data flow to each client with a non-stationary distribution in
such FL setting, so as to provide a better real-time performance
in practical HAR applications.
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