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Abstract— Self-supervised Human Activity Recognition
(HAR) has been gradually gaining a lot of attention in
ubiquitous computing community. Its current focus pri-
marily lies in how to overcome the challenge of manu-
ally labeling complicated and intricate sensor data from
wearable devices, which is often hard to interpret. How-
ever, current self-supervised algorithms encounter three
main challenges: performance variability caused by data
augmentations in contrastive learning paradigm, limita-
tions imposed by traditional self-supervised models, and
the computational load deployed on wearable devices by
current mainstream transformer encoders. To comprehen-
sively tackle these challenges, this paper proposes a pow-
erful self-supervised approach for HAR from a novel per-
spective of denoising autoencoder, the first of its kind to
explore how to reconstruct masked sensor data built on
a commonly employed, well-designed, and computation-
ally efficient fully convolutional network. Extensive exper-
iments demonstrate that our proposed Masked Convolu-
tional AutoEncoder (MaskCAE) outperforms current state-
of-the-art algorithms in self-supervised, fully supervised,
and semi-supervised situations without relying on any data
augmentations, which fills the gap of masked sensor data
modeling in HAR area. Visualization analyses show that
our MaskCAE could effectively capture temporal semantics
in time series sensor data, indicating its great potential in
modeling abstracted sensor data. An actual implementation
is evaluated on an embedded platform. Our code will be
released at https://github.com/cheng-haha/MaskCAE.

Index Terms— Human Activity Recognition, Sensor,
Masked Reconstruction, Convolutional Autoencoder, Self-
Supervised Learning.
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Fig. 1: Masked reconstruction along temporal and sensor axes.

I. INTRODUCTION

A. Background

The wide popularity of portable devices equipped with
embedded sensors such as smartphones and smartwatches
has motivated the study of sensor-based Human Activity
Recognition (HAR), which becomes a spotlight in ubiquitous
computing community [1]. However, it is extremely chal-
lenging to manually label time series sensor data, which is
often hard to interpret than image data. To assign accurate
labels, human annotators have to rely on prior experience
knowledge to determine the starting and terminating locations
in intricate time-series sensor data for an activity [2]. In recent
years, there has been a significant interest in applying Self-
Supervised Learning (SSL) to sensor data to tackle above
challenge [3], [4], [5]. Specifically, self-supervised learning
involves leveraging pretext tasks to learn a well-generalized
feature representation on a large amount of unlabeled data,
followed by fine-tuning in downstream tasks. It provides a
promising solution to achieve competitive HAR algorithms
that are comparable to or even surpass traditional supervised
approaches, hence indicating a potential to alleviate laborious
or time-consuming manual efforts and data-hungry issues [6].

B. Current challenges

In the pursuit of an improved pre-trained HAR model, prior
most works usually embrace Contrastive Learning (CL) [7],
i.e., a mainstream pre-training technique in self-supervised
learning paradigm, which leads to significant challenges. CL
methods primarily seek to learn feature representations from
different views for the same sample. For instance, classical
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Fig. 2: An overall pipeline of MaskCAE in HAR scenario. (a) The collected sensor data first undergoes preprocessing, such as
data normalization and sliding window. (b) Unsupervised pre-training involves reconstructing the mask sensor readings using the
loss Lrec applied only to the mask regions. The reconstructed process enables the model to gradually capture intricate activity
semantic information from ground truth. (c) After pretraining, the encoder’s weights can be transferred to the downstream
model followed by a classifier to output softmax probabilities for activity prediction. Then the model FCN is fine-tuned. (d)
Once training is completed, the model can be deployed on embedded devices to recognize target activities.

approaches like SimCLR [8] perform data augmentation by
treating different views of the same sample as positive pairs
and other samples in a batch as negative pairs. However, the
choices of data augmentation always play a critical role in
CL, and recent literatures suggests that it might introduce
substantial variance in the final performance [9], [10].

Alternatively, it is worth exploring how to apply autore-
gressive modeling methods as a potential SSL solution to
circumvent such performance variability stemming from data
augmentation [11], [12]. This strategy is simple yet effective,
which utilizes an encoder to encode sensor information into a
latent representation vector and employs a decoder to recon-
struct the latent representation into an original input. Typically,
Masked Reconstruction [3], akin to BERT [11], masks out a
portion of sensor data points in the transformer [13] and re-
constructs the missing semantic information using the decoder.
Yet, it has been observed that the achieved performance of the
self-supervised model is rather limited. Moreover, the high
computational complexity of transformers poses a significant
challenge when deployed on a mobile device [14].

C. Research motivation
Recent years have witnessed remarkable success of Convo-

lutional Neural Networks (CNNs) [2], which can effectively
extract hierarchical activity features from sensor data while
offering fast inference speed. Therefore, to tackle the afore-
mentioned challenges, a natural idea motivated by Masked
Reconstruction arises: Can one take the advantage of CNN’s
hierarchy to reconstruct masked time series sensor data
for activity inference? Intuitively, extending the success of
self-supervised from transformers to efficient convolutional
networks is a wonderful and potential. To the best of our
knowledge, how to port Masked Reconstruction into efficient
convolutional backbones has been rarely explored in HAR
area. As we have known, representation learning for HAR
is mainly based on analyzing the sensor readings extracted

through a popular sliding window strategy. Similar to previous
works [3], [11], [12], one can set the values across all sensor
axes for these randomly chosen timesteps to zero (Fig. 1).
To this end, each input window will be perturbed by a binary
mask matrix with the same dimensions. Then, the final masked
sensor input can be obtained by taking their dot product. This
goal is to force the model to reconstruct these masked out
parts, which can learn temporal patterns from context and thus
make for a richer representation than that is directly derived
from raw sensor data. However, when integrating CNNs with
masked autoencoders for sensor data, there are two potential
issues that need to be addressed. (1) One issue comes from
the fact that mask modeling, that is rooted in natural language
processing (NLP) tasks, usually operates in a single-scale
manner [11]. Simply applying it to CNNs would inevitably
result in losing the advantage of hierarchical modeling in
HAR scenarios. Such hierarchical structure has always been
the gold standard for HAR based on time series sensor data,
which allows for substantial amplification of activity semantics
information from sensor data while decreasing computational
overload. Unlike Mask Reconstruction [3], that utilizes only
one fully connected layer as the decoder, a straightforward
solution is to employ a hierarchical decoder that may capture
multi-scale encoded features from sensor signals. (2) Another
issue is that unlike transformers, plain convolutional networks
not only run fixed-length sliding window with overlapping but
also operate on regular feature maps, which lack the capability
to handle variable-length inputs from masking operations [14].
As shown in Fig. 4, directly zero-outing all masked sensor
readings and feeding them into CNN might cause a severe
shift in data distribution. To fill this gap, a promising solution
is to first mask sensor readings randomly in a patch-wise
manner. Noting that these unmasked patches can coincide
well with point clouds by sharing a sparse nature, one can
treat unmasked parts as a set of sparse patches and then
apply sparse convolutions to handle only visible or seen
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parts for encoding [15], [16], hence allowing CNN to handle
irregular masked sensor input without a distribution shift.
Notably, sparse convolutions can effortlessly transform into
dense weights during fine-tuning, simplifying the acquisition
of complete pre-trained encoder weights for CNNs.

D. Contribution
Inspired by above observations, we propose a novel

approach called Masked Convolutional AutoEncoder
(MaskCAE) by introducing BERT-style pre-training into
a well-designed fully convolutional network for activity
recognition, which in turn may be of benefit to Masked
Sensor data Modeling. Fig. 2 presents an overview of
data collection, unsupervised pretraining, and fine-tuning
for activity inference, which utilizes a set of components
including sparse convolution, feature projection, information
fusion decoder, patch-level normalization mask loss, etc. to
address the aforementioned challenges (Fig. 5 shows the
complete framework design). In particular, sparse convolution
is in charge of accurately eliminating the information
of these masked parts while allowing CNNs to easily
handle irregularly masked sensor inputs. For encoding, it
is worth noting that signal-wise feature extractors [17],
[18] act as encoders, where different sensor channels do
not interfere with each other. Patch-level normalization
loss with sparse convolution is used to compute only the
loss of the masked portions, which ensures that the feature
representation network is able to reconstruct the masked
sensor signals based on the fine-grained information from the
non-masked regions of sensor data. For decoding, we utilize
the multi-scale decoder symmetrically with the encoder, and
fill the masked embeddings to the masked parts, and then
feed the encoded features to the hierarchical convolutional
decoder. In particular, we highlight that the decoder need
to see the contextual information among different sensor
channels. In such a way, the whole sensor time-series
data can be reliably reconstructed by fusing the contextual
semantics from different sensor channels, even if partial
sensor channels are completely masked. Extensive experiment
analysis on three public benchmark datasets including
USC-HAD [19], MotionSense [20], and UCI-HAR [21],
validates the effectiveness of MaskCAE in fully-supervised,
self-supervised, and semi-supervised scenarios. In summary,
the main contributions of this paper are as follows:
• In this paper, to extend recent success of self-supervised

from transformers to efficient convolutional backbones,
we present a new self-supervised algorithm called
MaskCAE, which utilizes masked reconstruction to
model intricate time series sensor data built on a hi-
erarchical AutoEncoder for HAR. We explore how to
port Masked Reconstruction into efficient convolutional
backbones. To the best of our knowledge, this paper is
the first work to reconstruct masked sensor data built
on efficient CNN, which fills the absence of masked
reconstruction in sensor data and presents promising
state-of-the-art results.

• Unlike previous most self-supervised contrastive algo-
rithms, our approach starts from another perspective of

autoregressive modeling, which does not rely on any
data augmentations, hence greatly alleviating potential
unstableness and performance variability caused by man-
ual data augmentations. Further, in contrast to the trans-
former encoders commonly employed in the BERT-style
pre-training paradigm, the full convolutional network in
MaskCAE provides a reasonable and faster inference
speed, which is potentially beneficial for the practical
HAR deployment.

• Our method is the first use of sparse convolution and
hierarchical design for masked sensor data modeling.
Extensive experiments and ablation studies validate the
effectiveness of the proposed method for various HAR
tasks, which surpasses both state-of-the-art models by
significant margins in self-supervised, semi-supervised,
and fully-supervised scenarios. Interpretable visualiza-
tion analyses provide a deep insight into the powerful
MaskCAE. A practical implementation is evaluated on
resource-limited mobile device. All these evidences re-
veal a promising future of masked sensor data recon-
struction on hierarchical convolutional backbones.

II. RELATED WORKS

A. Human Activity Recognition (HAR)
In recent years, extensive research has been conducted in

utilizing deep learning models such as RNNs, CNNs, Residual
Networks, Hybrid Models, AutoEncoders, and Transformers to
extract temporal features from activity sequences [17], [22],
[23], [24], [25]. These studies have demonstrated outstanding
performance in various activity recognition tasks. For instance,
Hammerla et al. [25] present comprehensive experiments
on RNNs, CNNs, and hybrid model DeepConvLSTM [26].
Jiang and Yin [27] tackle the HAR problem by utilizing
new activity samples as inputs to deep CNNs (DCNN). To
explore the optimal extraction and fusion of features from
multimodal sensor data, MCNN [17] extract temporal features
from each signal channel. Furthermore, Kim [18] showcase a
highly effective signal-wise temporal feature extractor. How-
ever, previous literatures primarily focus on fully supervised
HAR tasks. It still remains a challenge whether these works
can achieve satisfactory performance when handling limited
labeled data [6].

B. Self-Supervised Learning for HAR
Indeed, labeling time-series data is a challenging task, and

it is impractical to assume the availability of sufficient labeled
data in real-world scenarios. Self-supervised learning [7], [8],
[28], originating from the realm of unsupervised learning,
emerges as one of the most effective solutions to tackle this
dilemma. Specifically, self-supervised learning leverages unla-
beled data to learn a well-generalized representation network
through pretext tasks, which is then fine-tuned for downstream
tasks [8], [29]. In the context of HAR, self-supervised learning
garners significant attention. Tang et al. [10] are the first to
explore the application of contrastive learning in HAR using
the SimCLR framework, employing temporal augmentations.
Khaertdinov et al. [4] continue along the same lines, exploring
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various task scenarios. Haresamudram et al. [30] apply a
method called Contrastive Predictive Coding to HAR. Wang
et al. [31] generated soft labels by using an unsupervised clus-
tering method to mask negative samples of the same cluster.
Qu et al. [9] study different contrastive learning algorithms
on HAR datasets and provide detailed ablation experiments.
However, it’s worth noting that the current works in contrastive
learning often rely on data augmentation, inevitably increasing
the complexity of the task. Finding suitable data augmentations
remains a question to be addressed [9], [10]. Moving on to the
domain of HAR based on autoregressive modeling, Masked
Reconstruction [3] explores how to reconstruct masked sensor
data on transformer [13]. CAE [32] employs convolutional
models as both an encoder and a decoder, reconstructing com-
plete signal inputs using latent representation vectors. How-
ever, previous works cause slow inference on Transformer-
based backbones, which is not suitable for resource-limited
mobile devices. Therefore, it deserves further investigation
on how to port masked reconstruction into full convolutional
networks for a better accuracy-cost trade-off in self-supervised
HAR scenarios. Woo et al. [33] and Tian et al. [34] have
first introduced the use of sparse CNN for masked self-
supervision on computer vision tasks. Different from [15],
[33], [34] targeting at vision research community, this paper
is mainly centered on the advancement and refinement of
SSL for HAR based on multimodal sensor data, which has
been rarely explored in this area. This spurs us to take a
deeper look at the fundamental difference between image
and sensor data processing. The primary objective of the
study is to address one crucial issue present in existing HAR
methods [2], [3], [6], [9], [10], [30], [32], which are dealing
with annotation scarcity in sensor data by randomly masking
out missing sensor readings and constructing an effective
pre-training task, while trying to apply previous transformer-
specialized SSL algorithm to pure convolutional backbone for
HAR. We introduce MaskCAE, which tackles above issue by
designing a hierarchical encoder-decoder structure along with
temporal masking strategy. It primarily leverages the temporal
correlations to discover the signal fluctuations in multimodal
sensor data, so as to achieve superior results while relieving
the shortage of labeled sensor data.

C. Autoregressive Modeling
The Denoising Autoencoders (DAE) [35], [36] are a type of

autoencoder that uses a corrupted version of a signal as input
to reconstruct the uncorrupted input signal. Masked Language
Modeling (MLM) [11] has seen great success in natural
language processing. Inspired by it, BEiT [37] brought the
masked prediction paradigm to computer vision and showed
the potential of Masked Image Modeling (MIM) on various
tasks [36]. MAE [12] proposed predicting original pixel values
for masked image patches. Prior most Masked Modeling
literatures have focused on language and visual tasks, and there
has been less efforts in handling sensor data. To the best of
our knowledge, this paper is the first work in masked sensor
data reconstruction built on efficient convolution network
backbones, aiming at striking a better accuracy-latency trade-
off for on-device activity inference.

Fig. 3: Fully Convolutional Network (FCN) for HAR. Conv
denotes the convolutional layer, and BN denotes Batch Nor-
malization. Max pooling down-samples the temporal features.
FC denotes fully connected layer.

Fig. 4: Data density on a random sample from USC-HAD.
Masked sensor data is assigned a value of 0. If plain con-
volution is applied without skipping the masked region, the
convolutional operation will see a large number of 0 values,
severely compromising the integrity of sensor features. Sparse
convolution, on the other hand, directly skips the masked area,
resulting in a data distribution similar to the original input.
This capability allows the model to retain sufficient activity
semantic information.

III. METHOD

A. Three Guidelines for Designing Lightweight
Convolutional HAR Encoder

In this section, based on previous mainstream HAR litera-
tures [1], [2], we design the fully convolutional network (FCN)
according to the following three basic guidelines:
• G1: Local activity features of temporal sensor data

should be extracted. In time-series sensor data, noise
needs to be filtered, and not every sensor reading is
useful. For HAR tasks, the extraction of local features
is particularly crucial [17], [26], [27], [38].

• G2: Different sensor channels should not interfere
with each other. Independently extracting temporal fea-
tures from each sensor channel can be an ideal solu-
tion [17], [18], [26], because merging or fusing unrelated
sensor modalities might potentially deteriorate recogni-
tion performance [22], [39].

• G3: The temporal receptive field of activity features
should be properly increased. Too small receptive field
could not capture long-range or global dependencies in
sensor data, which causes the model to lose temporal
semantic information [40]. Intuitively, non-parametric
subsampling such as pooling operation can alleviate this
issue while reducing computational overhead [38], [40].

Fig. 3 presents an overall design of FCN, and Table. I
introduces the detailed configuration of our FCN. According to
the three guiding principles, we design such hierarchical FCN
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Fig. 5: The MaskCAE framework.

as our Encoder for MaskCAE, which can offer a powerful
backbone to capture discriminative feature representations.
First, to extract robust local features, we perform convolutional
operation followed by batch normalization (BN) and nonlinear
activation (ReLU) to filter out irrelevant disrupted information
while extracting discriminative activity features, which can
well conform to G1, because convolutional kernel can be
competent in capturing the local relevance of time series sensor
data, and the translational invariance introduced by locality;
Second, a k ∗ 1 convolutional kernel is slide over sensor data
to capture temporal activity features. Here, we employ one-
dimensional (1D) convolution over each individual univariate
time series signals for temporal feature extraction during
encoding phase. While there were multiple sensors axes, multi-
variate time series may be produced, thereby requiring such 1D
convolution to be performed separately. This is consistent with
G2; Third, if a large time scale is desirable, a max-pooling is
applied between two successive CNN layers for subsampling.
In light of hierarchical design, such layer-by-layer structure
can allow FCN to model high-level abstractions from intricate
sensor data in a multi-scale way, which is in well line with
G3.

B. Masked Sensing Modeling
Our approach is conceptually straightforward and can op-

erate over the aforementioned FCN backbone. The feature
representations can be learned by randomly masking [12] raw
continuous sensor data points at a certain rate. Then the model
predicts these masked unseen portions based on the provided
contextual information. The whole framework is shown in
Fig. 5, and relevant details are described as follows:
Sparse Encoder design. Previous popular Masked AutoEn-
coder (MAE) approaches [3], [11], [12] have been primarily
built on transformer-based backbones, focusing on using the
decoder to reconstruct patch-level information that is missing

in the encoder. It is worth noting that during encoding phase,
only non-masked patches are used for information transfer.
As a consequence, it will be extremely challenging while port
masked reconstruction into standard convolutional networks,
Unlike Transformers, convolutional backbones usually only
perform sliding window over regular grid, which lacks an
enough ability to handle sensor data with variable input
lengths. As shown in Fig. 4, successively applying such regular
convolution might potentially erode masked regions (zero
positions), causing a severe data distribution shift [33], [34].
Without loss of generality, sparse convolution is employed
to address this issue [15], [16], which allows us to skip the
masked parts on sparse feature maps and only calculates at
unmasked positions. Specific details are introduced as follows.
Given raw sensor input x ∈ RT×S (T and S denote temporal
and sensor dimensions respectively), the masked sensor sample
may be formally defined as xm = x � M0, where � is the
hadamard product. The binary mask matrix M0 ∈ [0, 1]T×S

can be randomly generated with the values of 1 and 0, which
denote the corresponding unmasked and masked regions. As
shown in Fig. 5, the N -layer FCN backbone is used as our
enconder E = E1 ◦ E2 ◦ · · · ◦ EN(·), where Ei is the i-th
Encoder layer and ∀i ∈ {1 ≤ i ≤ N = 4}, which is in
charge of generating a series of sparse feature maps {FEi}

N
i=1

by ConvBlockSparse (i.e., Sparse Convolution) [15] at different
scales. Here sparse convolution means that it only computes
while the kernel center lies at a non-maksed position. During
pre-training procedure, we encode the masked sensor data in
a layer-by-layer manner:

FE0 = xm,

FEi = ConvBlockSparse
i (FEi−1)

= Ei

(
FEi−1

)
�Mi, ∀i ∈ [1, 2, 3, 4],Mi ∈ R

T

2i
×S ,

(1)

where Ei (·) � Mi denotes sparse operation that removes
the masked sensor features by mask matrix {Mi}Ni=1. Tak-
ing our FCN backbone as an example, each of {Ei}Ni=1 is
followed by a subsampling operation. Keeping the sensor
dimension unchanged, the sparse feature maps FEi

will be
successively subsampled by a factor of 2 after every block.
For an input sensor window, the encoder can produce feature
maps {FEi

}Ni=1 at 4 temporal scales with tensor shapes of
{T2 × S, T

4 × S, T
8 × S, T

16 × S} (also see Table. I). As
illustrated in Fig. 5, even as the temporal features are halved
at each level, the masked positions remain unchanged (with
black squares representing masked data points). This scheme
can help to avoid the deformation of mask pattern caused
by convolution, while maintaining a consistent masking ratio
through all convolutional layers.

It’s worth noting that the encoder uses an FCN as the back-
bone network. During pre-training phase, sparse convolutions
force the model to only see unmasked sensor data points,
thereby encouraging the encoder to learn how to reconstruct
these unseen masked positions. Importantly, the sparse con-
volutional layers are transformed back into standard dense
convolutions during fine-tuning stage (Pre-training:Ei (·) �
Mi → Evaluation:Ei (·)), which could seamlessly transfer the
model weights to the FCN with the same size.
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Information Fusion Decoder design. MaskCAE uses the
UNet [41] module as its decoder. However, if the UNet [41]
module only extracts features along the temporal axis in an
independent or separate manner (G2), it may fail to capture
contextual semantics between different sensor channels, mak-
ing it challenging to reconstruct the missing information that
matches the ground truth. A simple yet effective solution is
to apply square kernel convolutions (i.e., kernel size: 5 × 5)
to fuse information from different sensor channels, which can
allow for better decoding of latent features from the encoder.
We explain why the main difference occurs between Encoder
and Decoder. During encoding phase, one main concern is
that there might exist the temporal disparity across different
sensing modalities (e.g., different sensors axes, or channels).
As a result, directly merging or fusing unrelated sensor
modalities might potentially deteriorate model performance.
To avoid temporal disparity, one should extract time features
independently from each individual univariate sensor channel
by separately applying k×1 convolution kernel to slide along
the time axis (G2). In other words, the Encoder’s duty is to
discover the signal fluctuations within a fixed temporal range,
and then transfer the Encoder’s weights to FCN to capture as
much as possible temporal feature representation. Instead, after
reshaping original sensor data with the Encoder, the Decoder
is in charge of hierarchically receiving masked sensor data,
which aims to strengthen the Encoder’s sequential activity
modeling by reconstructing these missing sensor readings.
Thus, for reconstruction purpose, an ideal solution is to use k×
k convolution kernel, which enable the Decoder to see nearby
data points across different sensor axes or channels. In such
a way, more activity semantic information can be captured to
better reconstruct the corresponding masked regions. Before
reconstructing, it’s essential to map the information from each
level of the encoder to the decoder using Feature Projections
(FP). Without loss of generality, as shown in Fig. 5, assuming
that Ei and Di denote the i-th modules of the encoder and
decoder, respectively, the features at the i-th level can be
mathematically formulated as FEi

and FDi
:

FD4
= FP4

(
F ′E4

)
,

FDi = Di

(
FDi+1

)
+ FPi

(
F ′Ei

)
(∀i ∈ {3, 2, 1}).

(2)

Specifically, F ′Ei
represents the masked sensor data points,

where these masked embeddings [Mi] (as shown in Fig. 5)
can be inserted into the empty positions over sparse feature
maps, which are then mapped back to the decoder by using
FPs (i.e., a single convolutional layer without downsampling).
Later ablation studies will validate the effectiveness of these
modifications.
Reconstruction target. According to the guiding principle
from previous MAE literatures [12], [33], we choose the
Patch-level Normalization L2-Loss [12] as Lrec to pull the
reconstructed sensor signal close to the target sample:

Lrec = ‖(x− FD1) ◦ (1−M0)‖2 , (3)

where MaskCAE only calculates the loss at the masked
positions, so as to reduce the loss from a matrix to a scalar.
After pretraining, the decoder is discarded and the pre-trained
encoder’s weights can be transferred to downstream tasks.

TABLE I: Lightweight FCN Settings. ConvBlock (CB) is
shown in Fig. 3.

Stage #Features Layer Specification Settings
Encoder

1 T
2
× S CB

channel dim 16
kernel size 5*1, stride (1,1)

pooling size 5*1, stride (2,1)

2 T
4
× S CB

channel dim 32
kernel size 5*1, stride (1,1)

pooling size 5*1, stride (2,1)

3 T
8
× S CB

channel dim 64
kernel size 5*1, stride (1,1)

pooling size 5*1, stride (2,1)

4 T
16
× S CB

channel size 128
kernel size 5*1, stride (1,1)

pooling size 5*1, stride (2,1)
Classifier

Flatten, FC layer

TABLE II: Statistical information of datasets and experiment
setup. #Sensors represents the type of sensor channels used (A
= accelerometer and G = gyroscope). #SW denotes the sliding
window length.

Dataset USC-HAD MotionSense UCI-HAR
#Sensors A,G A,G A,G
#Subjects 14 24 30

#Class 6 12 6
Freq (Hz) 30 30 30

#SW 1 s 1 s 1 s
#Class 6 12 6

#Train samples 35608 37265 28096
#Valid samples 9201 7013 5364
#Test samples 10514 11709 7736

Pre-training Linear probing or Full fine-tuning
Optimer LAMB [42] AdamW [43]

Learning rate 2e-3 1e-4
Epochs 1000 100

Batch size 512 512
Mask ratio 0.3 -

IV. EXPERIMENTS

A. Experimental setting

Benchmark datasets. In line with prior most studies [4],
[3], [30], we select three of the most commonly employed
benchmark datasets for performance evaluation: USC-HAD,
MotionSense, and UCI-HAR, whose details are introduced
as follows. USC-HAD [19]: This dataset contains sensor
readings recorded from 14 subjects, who perform 12 dif-
ferent activities such as ’forward walking,’ ’left walking,’
’right walking,’ ’jumping,’ ’sitting,’ ’standing,’ and ’sleeping.’
MotionSense [20]: This dataset involves 24 participants with
varying genders, ages, weights, and heights, where each person
carrying an iPhone 6s engages in six types of activities: ’de-
scending stairs,’ ’ascending stairs,’ ’walking,’ ’jogging,’ ’sit-
ting,’ and ’standing.’ UCI-HAR [21]: This dataset is composed
of sensor recordings from 30 subjects, who are instructed
to perform six kinds of activities of daily living (ADLs):
’standing,’ ’lying,’ ’sitting,’ ’walking,’ ’walking upstairs,’ and
’walking downstairs.’ Each subject wears a waist-mounted
smartphone (Samsung Galaxy S II) equipped with embedded
inertial sensors. Following the same data splitting protocol as
previous literatures [3], [4], [30], UCI-HAR and MotionSense
utilize 20% of subjects for testing, while holding out the
20% of remaining subjects for validating. USC-HAD utilizes
subjects 11, 12 for validation and subjects 13, 14 for testing,
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TABLE III: Self-supervised learning results (Bold font highlights the fully-supervised FCN only, and the two different self-
supervised settings, i.e., linear probing and full fine-tuning for our MaskCAE). The methods in the table are assumed to use
Linear Probing (LP) by default. † denotes Full Fine-Tuning (FFT). CL and AM are Contrastive Learning and Autoregressive
Modeling in Self-Supervised Learning (SSL) algorithms, respectively.

Method Type Backbone USC-HAD MotionSense UCI-HAR

1D Conv [30] Sup 49.09 86.66 79.79
DeepConvLSTM [26] Sup 44.83 85.15 82.83

Transformer [3] Sup 43.84 83.30 82.61
CNN-Transformer [4] Sup 60.56 - 95.26

FCN Only Sup 60.13 89.43 93.66

Multi-task SSL [5] SSL TPN 45.37 83.30 80.20
CPCHAR [30] CL 1D Conv 52.01 89.05 81.65
CSSHAR [4] CL CNN-Transformer 57.76 - 91.14

Masked Reconstruction [3] AM Transformer 49.31 88.02 81.89
CAE [32] AM CNN 48.82 82.50 80.26

MaskCAE (LP) AM FCN 57.36 89.64 93.19

MaskCAE (Ours)† AM FCN 64.32 90.35 94.59

while holding out the rest for training. For fair comparisons,
the original accelerometer and gyroscope signals are further
downsampled into 30Hz and divided into 1-second time win-
dows with 50% overlap. Table. II summarizes the specific
details. We perform five runs to report their average values
as final results.

Evaluation Metrics. Due to the potential issue of class im-
balance in HAR situations, following previous literatures [4],
[30], we choose the averaged F1-score as the primary perfor-
mance metric:

F1 − score =
1

C
×

C∑
i=1

2× Precisioni×Recalli
Precisioni +Recalli

, (4)

where C represents the total number of classes. Precisioni and
Recalli for the ith activity class are defined as TPi/(TPi +
FPi) and TPi/(TPi + FNi), respectively. Here, TPi, FPi,
TNi, and FNi denote true positives, false positives, true
negatives, and false negatives in the ith activity class.

Implementation details. Different from previous most
contrastive learning works [4], [9], [30], we do not apply
any data augmentation to original sensor data. During the
pre-training phase, a LAMB [42] optimizer is employed to
train the Encoder-Decoder architecture at a masking ratio of
0.3. The training process lasts 1000 epochs with a batch
size of 512, while the cosine annealing learning rate is
2e − 3 ∗ batchsize/256. During the fine-tuning phase, we
transfer the encoder’s weights to the FCN backbone (Table. I).
An AdamW [43] optimizer is utilized to fine-tune the FCN
for 100 epochs with a cosine annealing learning rate 1e −
4 ∗ batchsize/256. In addition, following the same strategy
in previous works [3], [12], [31], the encoder is first pre-
trained on unlabeled training data. Without loss of generality,
we evaluate two most popular fine-tuning protocols [12] by
adapting the pre-trained models on the whole training set with
the original activity labels: Linear Probing (updating only the
last linear classification layer) and Full Fine-Tuning (updating
all parameters of the pre-trained model). Specific details are
summarized in Table. II. Unless otherwise specified, these
implementational details are considered as default settings.

B. Self-Supervised Learning

In practice, the most common strategy for comparing rep-
resentations learned by self-supervised methods is to first
do pre-training without using class labels, and then use the
learned representations for fine-tuning downstream tasks such
as human activity recognition. This strategy has been widely
employed to evaluate the quality of feature representations
learned by quantifying performance [44]. Therefore, similar
to previous literatures [3], [4], [5], [30], [32], in Table. III,
we primarily compare the performance of our MaskCAE ap-
proach to state-of-the-art SSL techniques, e.g., Multi-task self-
supervision [5] and Convolutional Autoencoder (CAE) [32]
(and, for reference only, to supervised learning pipelines such
as DeepConvLSTM [26] and Transformer classifier [3]), given
that the main focus of this paper is on the self-supervised
pretraining-finetuning paradigm. To observe the performance
ceilings that the learned feature representations can attain,
here we first report only the fully-supervised FCN F1-score.
Built on the FCN backbone, then we consider two different
self-supervised settings: MaskCAE by linear probing and
MaskCAE by full fine-tuning, which are the aforementioned
two standard fine-tuning protocols [12], [33]. We pretrain mod-
els using the proposed MaskCAE framework, and compare the
full fine-tuning results to the linear probing counterparts. That
is to say, we gradually apply the two most important designs
(FCN and MaskCAE) in our proposed MaskCAE framework
(also see Fig. 2) and check the corresponding performance
improvements respectively. Following the linear probing setup
used in previous work [3], [4], [30], we find that MaskCAE’s
performance can be very close to that of fully supervised
FCN on various datasets. It’s worth noting that our approach
outperforms state-of-the-art autoregressive modeling methods
by significant margins of 8.05%, 1.62%, and 11.30% on USC-
HAD, MotionSense, and UCI-HAR datasets, respectively. Fur-
thermore, MaskCAE without data augmentation is on par with
self-supervised contrastive learning baselines, but can perform
in a more simplified way without being plagued by variable
manual data augmentations. With the full fine-tuning strategy,
it can be seen that the pre-trained feature representations
obtained through MaskCAE offer better network initializations
under full supervision, which yield 4.19%, 0.92%, and 0.93%
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TABLE IV: Comparing our proposed MaskCAE with several
existing state-of-the-art SSL methods based on various data
augmentations. None denotes no data augmentation.

Data Augmentation SSL Methods

SimCLR BYOL SimSiam TS-TCC
noise 93.64 94.17 83.93 93.40
scale 90.00 88.16 82.91 89.17

negate 81.94 84.95 80.97 90.34
perm 88.25 90.73 85.63 90.29

shuffle 74.90 83.20 80.78 92.14
resample 91.84 91.7 88.25 91.65
rotation 54.08 88.2 87.57 89.61

perm+noise 89.51 89.90 81.41 93.79
scale+noise 93.54 89.08 81.02 90.97

MaskCAE(Ours)

None 94.29

TABLE V: Task Complexity. CL and AM are defined in
Table. III. As n data augmentations are applied to CL methods,
the overall performance complexity will tend to O(n).

CL AM

complexity O(n) O(1)

performance gains over FCN on USC-HAD, MotionSense,
and UCI-HAR datasets, respectively. In summary, it can be
seen that our MaskCAE exhibits the highest improvements
over fully-supervised FCN baselines in the table, and validate
that both hierarchical design and sparse masking strategy are
promising.

Obviously, MaskCAE appears to be an ideal solution in
the realm of self-supervised HAR. Following previous work
that explores the effectiveness of contrastive learning in HAR
area [9], we split the whole UCI-HAR dataset into training set,
validation set, and test set according to a ratio of 64%, 16%,
and 20%. As shown in Table. IV, we empirically compare
our proposed MaskCAE with the existing state-of-the-art SSL
methods based on data augmentation [9], [10]. One can clearly
observe the performance variations caused by different data
augmentation techniques, where there is no unique augmenta-
tion transformation that can consistently perform better than
others in all cases. The classification results of existing most
SSL methods drastically vary, suggesting that automatically
finding a suitable data augmentation solution for contrastive
learning will be extremely challenging, which still remains an
open problem [9]. In contrast, our proposed MaskCAE does
not apply any data augmentation to raw sensor input, which
instead seeks to strengthen activity feature representation by
reconstructing these masked sensor readings. In such a way,
it could effectively mitigate performance variations caused
by manual data augmentations, while avoiding the laboring
or time-consuming human intervention. Therefore, comparing
to previous works [9], [10], our proposed MaskCAE has
an obvious advantage, as it does not rely on sophisticated
augmentations that have proven to be essential for contrastive
learning. From Table. V, it is evident that MaskCAE out-
performs different contrastive learning baselines in terms of
complexity, which strongly supports our research motivation.

TABLE VI: Comparisons with fully-supervised learning results
(bold font highlights the best results). Latency is tested on a
Raspberry Pi 4 on ARM architecture with batch size of 1.
Att. Model [23] is re-implemented according to the original
paper, while TransFormer. HAR [9] are based on the publicly
available official code. To ensure a fair comparison, we follow
the same experimental setup as [20], [45] for UCI-HAR and
MotionSense (specifically, a time window of 2.56 seconds),
keeping USC-HAD consistent with Table. II in [24], [46].

Model Params (M) FLOPs (M) Latency (ms) Acc (%) F1 (%)

Based on USC-HAD
Att. Model 0.475 24.92 36.62 54.31 49.30

TransFormer. HAR 0.333 20.62 34.11 50.73 47.86
FCN 0.063 1.83 3.89 64.34 60.13

MaskCAE 0.063 1.83 3.89 68.48 64.32
Mahmud et al. [24] - - - - 55.00

Khaertdinov et al. [46] - - - - 62.80

Based on MotionSense
Att. Model 0.671 43.80 223.50 92.23 90.19

TransFormer. HAR 0.333 85.99 57.49 90.88 87.81
FCN 0.091 14.57 9.49 95.37 95.28

MaskCAE 0.091 14.57 9.49 96.83 96.24
Malekzadeh et al. [20] - - - 96.20 95.90

Zhang et al. [47] - - - - 95.66

Based on UCI-HAR
Att. Model 0.572 34.36 218.50 91.94 91.01

TransFormer. HAR 0.333 85.89 57.74 91.09 91.16
FCN 0.082 10.93 8.60 95.16 95.28

MaskCAE 0.082 10.93 8.60 97.23 97.35
Jiang et al. [27] - - - 95.18 -
Liu et al. [45] - - - 97.10 97.40

C. Fully Supervised Learning
In this section, we explore the differences in inference time

and performance between the current Attention-based HAR
models (Hybrid Model: Att. Model [23]; Pure Transformer
Model: TransF. HAR [9]) and MaskCAE. Furthermore, we
compare them to current state-of-the-art models such as SA-
HAR (Mahmud et al. [24]), T-WaveNet (Liu et al. [45]),
IF-ConvTransformer (Zhang et al. [47]), DCNN (Jiang et
al. [27]). It can be observed that MaskCAE consistently
outperforms or approaches previous state-of-the-art methods
in terms of five metrics: Params, FLOPs, Latency, Accuracy,
and F1. Thanks to the well-designed guidelines (G1, G2,
G3), FCN that fine-tunes the weights by the MaskCAE’s
encoder can provide faster inference and superior performance
compared to attention-based models and hybrid models. The
failure of attention-based HAR models may be attributed to the
small dataset size, which hinders the modeling of global de-
pendencies while lacking local Inductive Biases. Experimental
results also suggest an enhancement in feature representation
quality in case of longer time windows (e.g., 2.56s in UCI-
HAR). Overall, MaskCAE may be a well-generalized solution
that achieves a better balance between inference time and
performance.

D. Semi-Supervised Learning
To investigate the performance of representations trained

through MaskCAE across different sample quantities, we con-
duct experiments in a more realistic semi-supervised setting
following [3], [30]. Without loss of generality, we evaluate
the fine-tuned MaskCAE and the Baseline (end-to-end trained
FCN) on labeled samples x ∈ [5, 10, 25, 50, 75, 100] for
each class. The averaged F1-score from five runs is reported
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(a) USC-HAD (b) MotionSense (c) UCI-HAR

Fig. 6: Semi-Supervised Learning results.

Fig. 7: Visualizing reconstructed sensor signals.

in Fig. 6. Notably, on each dataset, MaskCAE consistently
outperforms Baseline when there are few labeled samples per
class. For instance, in the case of USC-HAD with only 25
labeled samples per class, MaskCAE shows a performance
improvement of 6.3%. When keeping 50 labeled samples per
class on MotionSense, MaskCAE is around 10% higher than
Baseline. As the labeled sample quantity increases, MaskCAE
continues to maintain its leading position, suggesting that it
can work as a robust feature classifier.

E. Visualization
Next, we present three activity samples (i.e., Masked,

Reconstructed, and Ground Truth) randomly selected from
the USC-HAD validation set to visually check whether our
MaskCAE can perform well in masked sensor data reconstruc-
tion. To the best of our knowledge, this is the first showcase of
masked reconstruction in HAR research community. As shown
in Fig. 7 , several interesting regions are highlighted by dashed
rectangles, which represent the reconstructed sensor signals
compared to raw sensor input. To provide a better visualization
for interpretability, we randomly select an activity sample to
arrange accelerometer x, y, z axes, and gyroscope x, y, z axes
in a sequential manner. It can be seen that MaskCAE fits raw
sensor input quite well within these masked positions, which
can perfectly capture the semantics information at low or
medium frequencies. Though there has been a slight mismatch
at some fine-grained data points, the model is still able to make
consistent and these masked positions (e.g., in the bottom
line). Therefore, we believe our MaskCAE can make masked
modeling well-suited for continuous sensor signals, leading to
a performance leap on downstream HAR tasks.

TABLE VII: Main ablations.

Method F1 ↓
Supervised 60.13 -
MaskCAE 64.32 0.0

w/o masking 60.69 -3.63
w/o sparse conv 62.34 -1.78
w/ plain decoder 60.90 -3.42

w/o FeatProj 63.03 -1.29
w/o norm loss 62.99 -1.33

V. ABLATIONS

A. The role of different components

To evaluate the effectiveness of each independent compo-
nent in MaskCAE, Table. VII provides a detailed ablation
analysis through its five variants on USC-HAD dataset while
removing one or multiple components. Overall, each compo-
nent plays a crucial role in MaskCAE. ’Supervised’ denotes
the Fully Supervised FCN training. ’w/o masking’ indicates
that one only employs MaskCAE to reconstruct raw sensor
input similar to CAE, rather than predicting masked sensor
data. The performance degradation caused by this variant
validates the effectiveness of masked sensor data modeling
in embracing self-supervised paradigm, thus establishing its
core contribution in HAR task. ’w/o sparse conv’ indicates one
does not use sparse convolution in the encoder, which forces
the encoder to see these non-masked and masked positions
at the same time by applying regular convolution during
pretraining. Obviously, this is a suboptimal strategy to make
the encoder see masked sensor data, leading to a potential
data distribution shift. ’w/ plain decoder’ indicates that a
plain decoder only extracts activity features along temporal
axis in a separate manner. However, this will cause a severe
information loss of contextual semantics, thereby validating
the necessity of the Information Fusion Decoder that considers
different sensor channels. ’w/o FeatProj’ indicates that one
does not apply the feature projection branch while preserving
masked embeddings. The performance gap brought by this
variant suggests the importance of information interaction
between the encoder and decoder. ’w/o norm loss’ indicates
a significant performance drop while removing normalization
loss, suggesting that normalizing the loss can help to capture
more latent features and improve representation power of our
MaskCAE.
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Fig. 8: Performance comparisons with different mask ratios,
where ’lp’ is linear probing while ’ft’ denotes full fine-tuning.

B. Mask ratios

Fig. 8 analyzes the influence of mask ratio on MaskCAE.
It can be observed that MaskCAE offers an acceptable mask
range between [0.1, 0.7] in both linear probing and full fine-
tuning evaluations, where the optimal mask ratio is close to
0.3. In addition, Fig. 9 visualizes the reconstructed results in
terms of different mask ratios. By highlighting the masked
parts with dashed boxes (green and purple curves indicat-
ing the z-axial acceleration and y-axial gyroscope signals,
respectively), we can see that as the mask ratio increases,
the reconstructed signals gradually deviate from the ground
truth, which starts to lose the temporal contextual semantics of
target activities. All these evidences reveal that a higher mask
ratio might lead to information loss, which can be attributed
to the fact that temporal sensor data does not possess as much
spatial redundancy. Unlike image data, two adjacent sensor
readings may be highly correlated due to their continuous
nature in raw sensor signals. Therefore, our mask ratio is rel-
atively lower compared to image-based MAE [12]. Intuitively,
temporal sensor signals have a high resemblance to language
data, which are artificially generated, highly semantic, and
information-dense. A higher mask ratio would have a negative
effect on information density, resulting in the loss of temporal
contextual semantics and the failure of masked modeling.

C. Partial fine-tuning.

During recent years, linear probing has been a popular
evaluation protocol in self-supervised HAR. However, this
strategy will miss the opportunity to exploit stronger non-linear
features, i.e., an obvious strength of deep learning. As a middle
comprise, we follow earlier work [12] to add a partial fine-
tuning protocol to check how performance is affected if one
fine-tunes only the last few layers while freezing the remaining
layers. Without loss of generality, we compare linear probing,
partial fine-tuning, and full fine-tuning on USC-HAD. As
shown in Fig. 10, it can be seen that linear probing (i.e., 0-
layer) performs the worst among them. All partial fine-tuning
results are obviously better than linear probing. We observe
an interesting phenomenon: only fine-tuning a few layers can
gradually improve F1 score close to full fine-tuning. Contrast
to linear probing, full fine-tuning can significantly boost the F1
score from 57.4% to 64.3%, which can be attributed to stronger

Fig. 9: Visualization results at different mask ratios for an
activity sample of “Jumping Up”. The first, second, third, and
fourth rows represent the reconstructed results at mask ratios
of 0.1, 0.3, 0.5, and 0.9, respectively.

Fig. 10: Partial fine-tuning results. “0-layer” (i.e., Linear
Probing) denotes just training the classifier while freezing the
encoder weights. “4-layers” denotes full fine-tuning.

Fig. 11: Confusion Matrices. The vertical axis represents the
true label, while the horizontal axis represents predicted label.

nonlinear features. In this paper, unless otherwise specified, we
apply full fine-tuning as default setting.

D. Confusion matrix

To clearly show MaskCAE’s potential in recognizing con-
fused activities, we further calculate the confusion matrices
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Fig. 12: HAR Model deployment on a Raspberry Pi platform.

for six types of activities selected from UCI-HAR set (also see
details in Section. IV-A). Fig. 11 illustrates a pronounced mis-
classification between ”Sitting” and ”Standing”, highlighted
by red rectangles. From the fully supervised FCN (left panel),
it is evident that the model is not easy to distinguish these
two activity categories due to their similar waveforms when
one subject maintains a static status, resulting in a significant
number of misclassifications. In contrast, benefitting from
masked sensor data modeling, the FCN trained by MaskCAE
(right panel) can reduce the number of misclassifications to a
much lower level.

E. Model Deployment
Since HAR has been predominantly deployed on mobile

devices, the inference time is indeed crucial, beyond the afore-
mentioned indirect metrics such as FLOPs. To provide a direct
estimation for inference time, we take into account practical
runtime of activity inference on a resource-constrained mobile
device. Without loss of generality, an actual implementation
is conducted on an embedded Raspberry Pi 4 equipped with
a Quad-Core Cortex-A72 (ARM v8) 64-bit SoC running at
1.5 GHz and 4 GB LPDDR4 SDRAM, which can well
support PyTorch deep learning library. Fig. 12 (top panel)
presents the main user interface, including predicted softmax
probabilities, the final recognized activity samples, as well
as practical inference time. As depicted in Fig. 12 (bottom
panel), our MaskCAE exhibits a significant advantage in edge
devices, resulting in much faster inference speed (i.e., around
7× speedup) compared to transformer-based model. Because
MaskCAE discards the Decoder and Feature Projections dur-
ing fine-tuning, it can almost maintain the same inference
speed as an end-to-end trained FCN (Baseline) without incur-
ring extra computational burden. Thus, our MaskCAE model
is more lightweight while enhancing feature representation
without accuracy loss, which can align well with the practical
requirements in real-world HAR situations. In addition to
previous observations, it is evidently concluded that MaskCAE
can provide an ideal self-supervised solution that achieves a
better accuracy-cost tradeoff for on-device activity inference.

VI. CONCLUSION

In this paper, we introduce a novel approach by leveraging
a fully convolutional model (FCN) widely employed in HAR
situations to reconstruct masked sensor data. The proposed
Masked Convolutional AutoEncoder (MaskCAE) provides a
simple, efficient, and computationally friendly self-supervised
solution for activity recognition, which is primarily com-
posed of a sparse encoder and an information fusion decoder
of hierarchical design. In the signal-wise encoder, we use
sparse convolution to mask out sensor information, while
only applying the reconstruction loss to these masked parts.
In particular, the hierarchical decoder can effectively fuse
temporal context information among different sensor channels,
leading to a clear performance gain. Extensive experiments
on several mainstream HAR benchmarks demonstrate that the
proposed MaskCAE can consistently and significantly improve
performance in self-supervised, fully supervised, and semi-
supervised settings. Detailed ablation studies showcase the
effectiveness of each independent component. Visual analyses
illustrate the significant potential of MaskCAE in modeling
temporal activity semantics. Hardware deployment indicates
that our MaskCAE built on FCN can strike a better trade-off
between inference time and accuracy.

In summary, our approach provides a valuable alternative
to relieve the reliance on large-scale labeled datasets, since
annotating sensor data is very challenging. We hope that
our exploration and discovery may inspire more works in
the ubiquitous HAR community to explore the potential of
masked sensor reconstruction and better embrace the pretrain-
finetune paradigm. For example, existing self-supervised HAR
works do not consider missing device problem in multi-device
HAR scenarios. One usually conducts pre-training with the
whole multi-device data, e.g., including smart jacket (arm and
chest), smart glasses (head), smartphone (wrist), and smart
shoes (feet). However, a user might wear different devices
in different scenarios: taking off his/her smart shoes when at
home, or taking off his/her smart jacket if the weather is hot.
This situation is realistic, since it is impossible for a user
to always carry all devices in daily life. As a consequence,
only part of wearable devices can be available, which can be
viewed as an arbitrary subset of total devices. In this case, raw
sensor data from certain unavailable devices can be completely
discarded via masking to simulate missing device scenarios.
Future work might extend masked sensor reconstruction to
such versatile downstream tasks.
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