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a b s t r a c t

Human activity recognition (HAR) using wearable sensors is always a research hotspot in ubiquitous
computing scenario, in which feature learning has played a crucial role. Recent years have witnessed
outstanding success of contrastive learning in image data, which learns invariant representations
by adding contrastive loss to the last layer of deep neural networks. However, the advantages of
contrastive loss have been rarely leveraged in time series data for activity recognition. A fundamental
obstacle to contrastive learning in HAR is that image-based augmentation could not fit well with
sensor data, which raises a critical issue: the distortions induced by augmentation might be further
enlarged by intermediate layers of a network and thus severely harm semantic structure of original
activity instance. In this paper, taking an inspiration from deeply-supervised learning, we propose a
novel approach called Contrastive Supervision by considering ‘‘where’’ to contrast, which aims to learn
time series augmentation invariances by forcing positive pairs nearby and negative pairs far apart at
different depths of neural network. Our approach can be seen as a generalization of contrastive learning
in a deeply-supervised setting, where the contrastive loss is used to supervise the intermediate layers
instead of only the last layer, allowing us to effectively leverage label information so as to better
fuse the multi-level features. Experiments on popular benchmarks demonstrate that our approach can
learn better representations and improve classification accuracy without additional inference cost for
various HAR tasks in supervised and semi-supervised learning paradigms.

© 2023 Elsevier B.V. All rights reserved.
1. Introdution

1.1. Background

During recent years, there has been an exceptional develop-
ent of Internet of Things and miniaturized sensors, and their
rominent advantages such as low manufacturing price, small
ize, and high accuracy enable a wide range of sensors to be in-
orporated into smart watches, phones, as well as other portable
evices [1]. Due to vast proliferation of sensor devices, human
ctivity recognition (HAR) has received considerable attention in
biquitous computing scenario, which adopts various machine
earning algorithms to analyze and comprehend human activities
hrough input data collected from various embedded sensors
ttached to different body positions, thus motivating various
ontext-aware applications including healthcare, fitness monitor-
ng, smart homes, elderly fall detection, etc. [2–4]. In particular,
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thanks to an ability of automatic feature extraction, deep neu-
ral networks (DNNs), especially convolutional neural networks
(CNNs) have demonstrated remarkable performance in learning
multi-level features to mine intrinsic activity characteristics [5,6].

1.2. Current challenges

Along above research line, a common trend is to stack more
and more convolutional layers to form deeper network [5–8],
among which the subsampling layers and indispensable non-
linear activation layers are interweaved with one another. There
has been a great wave of CNN-based researches emphasizing the
importance of automatic and hierarchical feature learning, which
have become one of the most dominant models for various HAR
tasks (also see the survey paper in [5]). Previous researches [2,
9–11] have primarily focused on designing different CNN archi-
tectures to fit a large variety of HAR applications. Embracing
such sophisticated CNNs with innovative connection topology
and tens of thousands of parameters, the past decade has wit-
nessed their great success. However, the success of deep CNNs
is often accompanied by rapid growth in computational cost,
ies data augmentation invariances via contrastive supervision for human activity
s.2023.110789.
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nd the resulting computation would inevitably increase latency
r inference time, which has an important impact on practical
AR implementation. As a consequence, one could not arbitrarily
ncrease model size due to restricted computing resources on
obile devices [12]. Therefore, it remains a challenging issue
hether there still exists room for performance improvement in
hese CNN-based methods, providing that one does not intend to
ncrease model size. In fact, developing different CNN architec-
ures is not the only way to boost model performance. Instead, we
rgue that improving the network learning paradigm is another
easible solution to achieve the compelling performance without
ncreasing additional parameters and computation during activity
nference.

On the other hand, the widespread popularity of mobile de-
ices such as smartphones has led to a vast amount of sensor data
treams, which could be utilized to better analyze and understand
uman behaviors for various healthcare applications. Recent ad-
ancements in deep learning have been laying a groundwork for
he development of more accurate HAR systems. These complex
eep models are typically trained through supervised learning,
hich usually depends on a set of large-scale labeled data sam-
les [7,12–15]. However, it is not easy to collect labeled sensor
ata, which has been one fundamental obstacle in performing
uch data-hungry deep learning algorithms for activity prediction.
n fact, it is impossible for an annotator to precisely label time
eries sensor data without an aid of corresponding video. Unlike
ideo data, time series sensor data stream such as accelerometer
races recorded from mobile devices is far difficult to interpret
y visual inspection, which renders manual labeling of sensor
ata to be expensive, time-consuming, and tedious [5,16,17]. As
result, labeled data collection is commonly done in a controlled
r semi-controlled laboratory setting (mostly involving less than
0 subjects) [12,18,19], which limits the generalizability of these
eep models in real-world HAR applications. Therefore, it de-
erves deeper investigation into how to make an economic use
f limited labeled data as effectively as possible.

.3. Research motivation

The aforementioned issue motivates us to improve the CNN
earning strategy so as to enhance model generalization and im-
rove accuracy for activity recognition. Our reasoning primarily
omes from two critical standpoints. On the one hand, unlike
revious studies targeted at designing different network archi-
ectures, one promising research line is to apply deep supervision
or CNN-based HAR, which lays an emphasis on the intermediate
eature representation and hidden layer supervision, instead of
nly adding the supervision to the final layer of the whole net-
ork [20,21]. It is well known that different convolutional layers
end to learn features at different levels. In general, the last layers
earn more task-related high-level features, while the shallow
ayers learn more common low-level features, where deep su-
ervision could force the shallow layers to learn the task-related
nowledge at an earlier time by applying the supervised task loss
o optimize the intermediate layers. There has been a consensus
hat deep supervision could effectively boost model performance,
nd help the neural networks to learn more discriminative fea-
ures at different levels [21–23]. To the best of our knowledge,
o HAR-related deep supervision research exists so far. On the
ther hand, contrastive learning has achieved state-of-the-art
erformance in representation learning across a large range of
omputer vision applications [24,25]. However, traditional data
ugmentation techniques used for image data like color distortion
enerally could not fit well with time-series sensor data [17,
6]. The contrastive learning has been rarely leveraged for time-
eries sensor data in the context of deeply-supervised HAR. From
2

a novel perspective of representation learning, we argue that
contrastive learning could provide better supervision for inter-
mediate layers compared to traditional deep supervision, which
deserves deeper investigations. By regarding two augmentations
from the same activity as a positive pair and different activity
samples as negative pairs, the CNN could be trained to maximize
the distance of a negative pair while minimizing the distance of
a positive pair, which enables the network to learn the invariant
representation from various sensor data augmentation like Jitter-
ing and Resampling. Because these data augmentation invariances
are generally low-level and task-irrelevant for various HAR tasks,
they might provide more beneficial knowledge for supervising
the intermediate layers.

1.4. Contribution

Recently, contrastive learning using data augmentation as an
alternative source of training data, has been proposed to address
the limitations caused by the lack of labels [24,25,27,28], which
seeks to learn invariant representations by contrasting positive
pairs against negative pairs, being an active study area in com-
puter vision. In this paper, we investigate for the first time,
to the best of our knowledge, the effectiveness of contrastive
learning in sensor-based HAR data. In particular, we apply deep
supervision in different levels [21] to enable contrastive loss in
supervising intermediate layers with augmented wearable sensor
data. To this end, a set of data augmentation schemes has been
introduced for time series sensor data, in place of traditional
image data augmentation operators. These data augmentation
techniques are evaluated on public HAR benchmarks. A com-
prehensive and systematic ablation study is provided to analyze
the effect of different data transformations, which shows that
different combinations of transformations could result in signifi-
cant differences in performance. Under both fully-supervised and
semi-supervised paradigms, the invariant representations learned
by the contrastive supervision framework can yield better per-
formance when models are trained with limited labels, which
indicates the potential of contrastive supervision framework in
HAR due to the modality-agnostic advantage of contrastive learn-
ing, paving a way to further studies that fully leverage these data
augmentation techniques in limited label information.

To be specific, taking an inspiration from above insight, we
propose a novel approach called Contrastive Supervision by com-
bining contrastive learning with naïve deep supervision for activ-
ity recognition task, which aims at training state-of-the-art CNNs
with improved accuracy and without causing extra computational
cost during activity inference. As illustrated in Fig. 1, a few pro-
jection heads are attached to the intermediate layers of the whole
neural network, in which each of them is trained by contrastive
loss. Here we borrow the concept of contrastive learning from a
self-supervised learning paradigm [25,27–29], which is used to
generate useful feature representations for activity recognition.
Due to recent great success, this study has gained popularity. A
core design in the majority of these architectures is to append a
projection head at the end of the backbone classification network,
which is comprised of a Global Average Pooling (GAP) operation,
a Rectified Linear Unit (ReLU), and a linear fully-connected (FC)
layer [25,27,28]. In this paper, the module’s main role is to project
the backbone features into a latent low-dimensional space at
different depths before applying the contrastive loss. Note that
since the projection head contains a ReLU activation function, it
is still a nonlinear transformation, but has only one hidden layer.
We highlight that the projection head can be essentially viewed
as a low-dimensional mapping [27] (here we map the output
of each layer into 128-dimensional embedding feature vectors),
which is useful for obtaining generalizable activity features from
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Fig. 1. An overview of the proposed Contrastive Supervision, where these auxiliary branches at different depths would be removed during activity inference stage
ithout additional memory or computational overhead.
small set of labeled sensor data. Due to its practical importance,
he projection head has always played a key role in the con-
rastive learning. The learned projection head would be discarded
nce training is completed. This is to say, the proposed approach
eeks to optimize the intermediate layers by Contrastive Super-
ision instead of traditional deep supervision. Such projection
eads would be simply discarded during inference stage so as
o avoid additional computation and memory overhead. Unlike
eep supervision targeted at optimizing every intermediate layer
o learn task-related knowledge for a specific activity recognition
ask, the intermediate layers in our Contrastive Supervision can
e trained to learn invariant representation from various time
eries data augmentations, which makes the network be able to
eneralize better. In addition, because contrastive learning gen-
rally performs well with smaller unlabeled data, the proposed
pproach could be easily extended to other semi-supervised HAR
aradigm. Extensive experiment analyses are conducted on four
ublic benchmark datasets including UCI-HAR [30], WISDM [31],
AMAP2 [32], and UniMib-SHAR [33], which show the effective-
ess of Contrastive Supervision on general activity classification
s well as semi-supervised HAR. The main contributions of this
aper are summarized as follows:

• In this paper, we revisit the concept of deep supervision
for activity recognition tasks, and propose a novel approach
named Contrastive Supervision targeted at applying con-
trastive loss rather than traditional supervised loss to op-
timize the intermediate layers of CNNs with improved ac-
curacy, without causing additional parameters and compu-
tational cost comparing to standard activity inference.

• Various time series data augmentations are utilized to gen-
erate different views for the same activity instance, which
help Contrastive Supervision to better learn invariant rep-
resentations from augmented sensor data. Experimental re-
sults empirically verify the effectiveness of Contrastive Su-
pervision in supervised and semi-supervised HAR scenarios.

• We perform comprehensive and in-depth ablation analyses
by studying the effect of several key components such as
contrastive loss, scalar temperature, and data augmentation
to emphasize their significance in deeply-supervised HAR.
In addition, a visualizing analysis is provided, which shows
that Contrastive Supervision can effectively enhance the
abstraction ability of CNNs to produce better embedding
distribution. Actual implementation is evaluated on a mobile

platform.

3

Despite higher performance, it is worth noting that most com-
plicated structures usually slow down the inference. One cannot
increase model complexity arbitrarily because of real-world busi-
ness requirements or hardware limitations. It would be more
reasonable to judge the quality of deep models according to
the trade-off between recognition performance and inference-
time costs, e.g., memory footprint and inference latency [5,12].
Inspired by the fact, this paper primarily seeks to complicate the
training-time network structure (i.e., attaching contrastive super-
vision branches to numerous intermediate layers) so as to boost
model performance while maintaining the original inference-
time structure the same or unchanged. After training is done, all
auxiliary branches associated with contrastive supervision would
be removed during inference. That is to say, both the training-
time and inference-time structure might be decoupled by only
complicating the network structure during training and then
transforming it back into the original inference-time structure for
deployment. In this way, the network could be trained to reach
a higher level of performance and then converted back to its
original inference-time structure for inference, without sacrificing
the inference-time costs. In the common cases, one can train deep
models on powerful workstations equipped with GPU, and then
deploy them into resource-sensitive mobile devices. Therefore,
it would be acceptable to improve model performance at the
expense of more training resources, as long as the deployed
model size remains unchanged.

The remaining part of this paper is structured as follows:
Section 2 reviews related literatures. Section 3 presents an overall
framework of our proposed Contrastive Supervision. Comprehen-
sive experiments, ablation analyses, as well as actual implemen-
tation, are conducted in Section 4. Finally, the whole paper is
concluded in Section 5.

2. Related works

In this section, we review some relevant researches in previ-
ous literature, from which our approach takes an inspiration. In
addition, we analyze their main distinctions from our mechanism.

2.1. Deep supervision and contrastive learning

In this part, we categorize the focus of our paper, i.e., Con-
trastive Supervision into deep supervision and contrastive learn-
ing, and review the background of each category. On the one
hand, deep supervision has been first proposed in 2015, when
Lee et al. has introduced a framework called Deeply Supervised
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et (DSN) [21] for image recognition task. During the past years,
here has been an ever-growing number of researches devoted
o applying deep supervision for performance improvement in
large variety of computer vision applications such as object
etection [34], image super-resolution [35], and semantic seg-
entation [36]. Li et al. have recently presented a comprehensive
nd in-depth survey about deep supervision, and summarizes its
ain applications in various areas [20]. In fact, deep supervision
as been never investigated in the context of HAR. On the other
and, contrastive learning has started to play a dominant role
n representational learning, which is able to effectively learn
nvariant representations via data augmentation. For example,
e et al. have introduced an approach of contrastive learning
amed MoCo [25], where a momentum encoder is utilized to
earn invariant representations from negative pairs through a
emory bank. Chen et al. have presented SimCLR [24], in which

he momentum encoder is replaced via utilizing a larger batch
f negative pairs. To alleviate the burden by the huge number
f negative samples, Grill et al. achieve competitive performance
ia BYOL [37] even with no need of using negative samples. Sim-
larly, motivated by an idea of neglecting negative samples, Chen
nd He have proposed an approach called SimSiam [38], which
ses a stop-gradient operation to help simple Siamese networks
chieve the state-of-the-art performance. Despite great success
f contrastive learning in image data, it could not perform well
n time series sensor data that has different properties due to
emporal dependency. Focusing on time series data augmentation
rom a perspective of contrastive learning [16,17,39], this paper
resents a novel cross-view Contrastive Supervision approach to
earn the invariant representations from augmented sensor data.
ifferent from previous works, our study aims to fill the gap
etween contrastive learning and deep supervision for HAR using
ime-series sensor data.

.2. Deep learning for HAR

During recent years, there has been a considerable number
f studies dedicated to learning discriminative activity features
utomatically via feeding sensor data into various deep neural
etworks such as convolutional networks, residual networks, and
ransformers, which demonstrate state-of-the-art performance
n a wide range of activity recognition tasks [2,5]. For example,
ammerla et al. [8], Ronao et al. [6], and Yang et al. [40] at
he earliest time have applied deep CNNs for activity recognition
roblem, which have gained wide popularity in learning multi-
evel and abstracted feature representations from raw sensor
ata. To improve the comprehensibility of HAR, Zeng et al. [41]
nd Ma et al. [7] have combined an attention module with con-
olution networks to highlight more important time steps as
ell as sensor channels along multimodal sensor data. Guan
t al. [14] have proposed to ensemble multiple deep networks so
s to improve the performance of activity recognition. In light of
bvious advantages of recurrent structures, Ordóñez proposed a
ovel network called DeepConvLSTM [13], which combines CNN
nd LSTM to extract both local and global activity features at
he same time. Al-qaness et al. [42] have integrated a multilevel
esidual network with bidirectional gated recurrent unit (GRU)
s well as an attention module to implement activity recogni-
ion, which achieves an impressive performance. Utilizing deep
NNs for feature embedding, Sharma et al. [43] have shown
he effectiveness of transformer-based architecture in feature
usion for HAR tasks. Haresamudram et al. [44] have introduced
framework of Contrastive Predictive Coding (CPC) to model the

ong-range temporal dependencies of sensor data, which leads
o significantly improved performance for HAR. On the whole,
urrent researches primarily focus on designing different network
4

architectures to improve performance but have not given the
comprehensive and in-depth considerations involved in how to
apply Contrastive Supervision in the best way across a range of
HAR applications. To our knowledge, this paper is the first work
to address this issue.

3. Model

This section presents an overview of the proposed Contrastive
Supervision HAR framework. To be specific, we first introduce a
generic layer-wise deep supervision HAR framework, and then
present an improved Contrastive Supervision scheme in the
deeply-supervised setting.

3.1. A generic deep supervision framework in HAR

We first introduce the formulation of deep supervision in the
context of HAR. In essence, sensor-based HAR might be seen as a
problem of classifying raw time series data recorded by wearable
sensors into a set of well-defined activities. Fig. 1 presents the
standard activity recognition workflow consisting of four main
steps: data acquisition, data pre-processing, feature extraction,
and activity classification, where raw sensor signals need to be
first preprocessed by performing noise filters and data stan-
dardization, then segmented into fixed-width fragments through
sliding window [13,41]. Different from traditional approaches
that involve handcrafted feature engineering, deep learning al-
gorithms are able to automatically extract activity features from
raw sensor data.

A classification network is often comprised of a feature extrac-
tor and a classifier with linear fully-connected (FC) layer [21,23,
45]. Without loss of generality, let ω = h ◦ f be a classification
network for activity classification, where h stands for the classifier
at the final layer that utilizes standard cross entropy loss. Given
that f = fK ◦ fK−1 ◦ · · · f1 is the feature extractor, K is equal to
the number of intermediate convolutional layers stacked within
f . Referring to previous literature [6,17], we adopt a three-layer
CNN architecture (i.e., K = 3) as our backbone feature extractor,
where each convolutional block consists of a convolution layer, a
Batch Normalization (BN) layer, a ReLU activation function, and
a Max-pooling operation. In general, the supervision would be
only employed at the final layer of the network during standard
training scheme. In such a manner, there are overall K − 1
auxiliary classifiers, which can be mathematically formulated as:

c1(x) = g1 ◦ f1(x),
c2(x) = g2 ◦ f2 ◦ f1(x),

. . .

cK−1(x) = gK−1 ◦ fK−1 ◦ · · · ◦ f1(x),
ω(x) = h ◦ fK ◦ fK−1 ◦ · · · ◦ f1(x).

(1)

For a given training set of N examples X = {xi}Ni with labels
Y = {yi}Ni , the overall loss function LDS can be defined in the
following form with a combination:

LDS = LCE (ω(X ),Y)  
from standard training

+α ·

K−1∑
k=1

LCE (ci(X ),Y)  
from deep supervision

, (2)

which includes two loss items and LCE is the standard cross
entropy loss. To be specific, the first item denotes the final layer
loss while the second item denotes intermediate supervision loss,
in which α is a hyper-parameter used to control the balance
between both items.
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Fig. 2. Schematic digram for proposed Contrastive Supervision pipeline. The detailed structure is shown at the top. The bottom illustrates interior structure of both
block types.
Table 1
Details of various data augmentation techniques.
AugmentationImplementation details

Jittering Inject a random Gaussian noise with zero mean and standard
deviation of 0.8 into raw sensor data to simulate disturbing
sensor noise.

Permuting Divide one sensor window into no more than 5 fragments
with the same length, all of which are randomly shuffled and
merged into a new window.

Scaling Multiply each sensor channel by a random scalar with a mean
of 2 and standard deviation of 1.1 for amplifying motion
signal amplitude.

Flipping Multiply the value of sensor signal by a factor of −1 to
generate a vertical mirror flip for input signal.

Shuffling Permute all channels of sensor data randomly to simulate
different wearing directions of the sensor.

Rotating Plot a 3D random axis that obeys a uniform distribution and
then rotate triaxial sensor readings (e.g., x, y, and z) by a
random angle in the 3D space to simulate different sensor
locations.

Resampling Use linear interpolation to up-sample raw sensor data three
times along time axis and then recover its original dimensions
by random sub-sampling.

3.2. Time series contrastive supervision for HAR

In this subsection, we further present our proposed time series
ontrastive supervision when applying deep supervision for HAR.
ithout loss of generally, there are two crucial concerns: (1)
ow to form the positive pairs and negative pairs for activity
ata; (2) How to add the contrastive supervised loss. As shown
n Fig. 2, in our work, contrastive supervision is employed after
ach hidden convolutional block fi (i.e., k = 1, 2, 3) by attaching
projection head gi, which can provide intermediate supervision
o as to make the learned features more discriminative. That is
o say, the convolutional blocks (i.e., f1, f2, f3) denote the inter-
ediate layers. On the other hand, the core idea of contrastive

earning is to pull positive pairs together while pushing negative
airs away in the feature embedding space, as indicated by its
ame [23,24]. Intuitively, a positive pair may be formed from two
iews by various data augmentations for the same sample, while
egative pairs may be formed by different samples. Nevertheless,
rior most data augmentation techniques in contrastive learning
rimarily focus on image data (e.g., cropping-invariance), where
uch invariance is potentially suboptimal for activity data since
ropping a subset from time-series data would inevitably cause
nformation loss because of crucial temporal dependencies. Ac-
ording to this cue, this paper seeks to explore how to tailor time
5

series data through different data transformation techniques [17,
26,39], as listed in Table 1. In fact, the main goal of the auxiliary
branches is to compare xi and xi+N for contrastive supervision.
Specifically, given a minibatch of activity sample X = {xi}Ni
and its corresponding labels Y = {yi}Ni , we can perform time
series data augmentation over each instance twice, which may
result in a minibatch of 2N augmented samples. For convenience,
we regard xi and xi+N as a positive pair generated from two
augmentations for the same sample, while xi and other samples
in a batch are regarded as a negative pair, as shown in Fig. 3.

As indicated above, the main goal of contrastive learning is to
learn such an embedding normalized space where positive pairs
stay close to each other while negative pairs are far apart. To this
end, several additional projection heads gk would be added to
the intermediate layer k of backbone networks during training
stage. In other words, ck = gk ◦ fk(x) is in charge of mapping
the backbone features (e.g. in the kth intermediate layer) into a
lower-dimensional embedding space in the context of Contrastive
Supervision. Since the input features used in Contrastive Supervi-
sion comes from the intermediate layers rather than the last layer,
the design of such projection head inevitably plays a crucial role
in model performance. In particular, it is worth emphasizing that
these additional branches would be removed during inference
time without cause extra memory and computational overhead.

To this concrete, let z = c(x) denote a composite function
consisting of the intermediate feature extractor fk(x) and a nor-
malization projection head gk, where gk is comprised of a GAP
operation, a ReLU activation function, and a linear FC layer [25,27]
(Fig. 2), the contrastive loss for given positive and negative pairs
may be formulated as:

LCon = −

N∑
i=1

log
exp (zi · zi+N) /τ∑2N

m=1 I[m̸=i] exp (zi · zm) /τ
, (3)

where τ is a constant temperature hyperparameter. I[m̸=i] is an
indicator function, whose value is equal to 1 if m ̸= i and 0
otherwise. The loss may be utilized to learn powerful represen-
tations in a self-supervised scenario. Without loss of generality,
in the supervised scenario, label has been always used to guide
the definition of positive and negative pairs [23,46]. In this case,
Eq. (3) can be rewritten as:

LCon =
−1

2Nỹi − 1

N∑
i=1

2N∑
j=1

Ii̸=j · Iỹi=ỹj

· log
exp

(
z i · z j/τ

)∑2N , (4)

m=1 Ii̸=m · exp (z i · zm/τ)
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Fig. 3. Contrastive Supervision with time series data augmentation in kth convolutional layer.
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here Nỹ denotes the number of total samples with the same
label ỹ in one batch. Assuming that zi = ck(xi) and z(i+N) =

k(x(i+N)) are 128-dimensional embedding feature vectors, we
urther implement the contrastive loss (as represented as the
rrows in Fig. 3 from z to feature embedded space) to force
ositive samples with similar semantics (in the same color) close
nd negative sample pairs with different semantics (in different
olors) far apart. Given the contrastive loss LCon, we highlight
hat the main distinction between above deep supervision and
ur contrastive supervision is that deep supervision trains these
ttached intermediate classifiers with standard cross-entropy loss
hile our approach trains them by the contrastive loss with time
eries data augmentation. To this end, let LCon (X ; ck) denote the
contrastive loss at ck, one can recast Eq. (2) in the following form:

LCoS = LCE (ω(X ),Y)  
from standard training

+α ·

K∑
k=1

LCon (X ; ck)  
from contrastive supervision

, (5)

here the first item still represents the standard training loss
hile the second item denotes the contrastive supervision loss
mployed at the intermediate layers. Since the second item does
ot use task-related loss LCE without yielding redundant opti-
izations, the last convolutional layer still utilizes Contrastive Su-
ervision to further improve representation quality. Here the top
anel in Fig. 2 illustrates a detailed architecture of the proposed
ontrastive supervision, which consists of a main branch and
hree attached auxiliary supervision branches. The contrastive
upervision (i.e., projection head) is added after each hidden
onvolutional block along the main branch. The blocks with the
ame type are presented in the same color: the projection heads
n auxiliary supervision branches are marked by dashed boxes,
hile each convolutional block in main branch is indicated by
olid boxes. A legend below the schematic diagram indicates both
lock types including the projection head in auxiliary branch and
onvolutional block in main branch. During training stage, the
ptimized objective function is equivalent to a sum of the cross-
ntropy loss (final layer) and contrastive losses associated with
ll auxiliary branches, as indicated in Eq. (5).
On basis of above formulations in supervised learning set-

ing, one can easily extend the proposed approach in a semi-
upervised learning paradigm [4,19,23], where there is a labeled
ataset X1 with labels Y1 and an unlabeled dataset X2 respec-
ively. In this case, because of the lack of labels, we only apply the
ontrastive Supervision to optimize the second item (i.e., LCon) on
he unlabeled data:

CoS (X1,Y1) + LCon (X2) . (6)
The relevant results will be introduced in the following sections. a

6

4. Experiment setting, main results, and analyses

In this section, we first introduce the benchmark datasets and
implementation details, and then evaluate our proposed Con-
trastive Supervision approach in the supervised learning scheme
and semi-supervised learning scheme. To ensure fair compar-
isons, we conduct all the experiments by applying different train-
ing strategies in exactly the same settings such as data prepro-
cessing, batch size, data splitting, and training epochs. More-
over, we also provide more comprehensive and in-depth ablation
analyses for Contrastive Supervision by exploring the effective-
ness of several key components. Finally, actual implementation
is evaluated on an embedded platform.

4.1. Experimental setting

Benchmark datasets. Following previous standard data pre-
rocessing pipeline [6,13,41], we adopt four popular benchmarks
ncluding UCI-HAR, PAMAP2, UniMib-SHAR, and WISDM recorded
n different scenarios with various sensors, e.g., accelerometers,
yroscope, which are detailed as follows: UCI-HAR [30]: The
ataset includes sensor recordings from 30 subjects, who are in-
tructed to perform six activities of daily living (ADLs) comprised
f ‘‘standing’’, ‘‘lying’’, ‘‘sitting’’, ‘‘walking’’, ‘‘walking upstairs’’ and
‘walking downstairs’’, while wearing a waist-mounted smart-
hone (Samsung Galaxy S II) with embedded inertial sensors.
uring data recording, the smartphone is utilized to acquire
hree-axis linear acceleration and three-axis angular velocity sig-
als at a fixed sampling rate of 50 Hz. For performance evaluation,
he data is divided into a 70:10:20 ratio for training, validation,
nd test. PAMAP2 [32]: The dataset is composed of sensor record-
ngs from nine participants, who are asked to participate in 18
ypes of physical activities, including 12 protocol activities such
s ‘‘cycling’’, ‘‘walking’’, and ‘‘rope jumping’’ and a few optional
ctivities such as car ‘‘driving’’, ‘‘playing soccer’’, and ‘‘watching
V’’. Each participant wears three wireless Inertial Measurement
nits (IMUs) attached to different body positions including an-
le,chest, and hand respectively. The original sampling rate of
00 Hz is further subsampled to 33.3 Hz for convenience of
nalysis. Referring to previous literatures [41,47], the data from
articipant 5 and Participant 6 are held out as the validation set
nd test set, while the other participants’ data is used for training.
niMib-SHAR [33]: This is a new acceleration dataset collected
y the research team from the University of Milano Bica, which
s purposely designed to monitor human activities and detect
alls. 30 volunteers whose ages range between 18 and 60 years
articipate in the data collection. All samples are recorded by
ndroid smartphones at a sampling rate of 50 Hz, which are
oughly divided into two categories: 8 types of falls and 9 types of

ctivities of daily living (ADLs). In particular, we perform a 30-fold
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Table 2
Statistical information of datasets and experiment setup.
Dataset UCI-HAR PAMAP2 UniMib-SHAR WISDM

Sampling rate (Hz) 50 33.3 50 20
Sensors 9 36 3 3
Subjects 30 9 30 29
Classes 6 12 17 6
Window size 128 171 151 200
Overlap (%) 50 78 50 90

Learning rate 1e−2 1e−2 1e−2 1e−2
Batch size 128 512 256 128
Epoch 200 200 200 200
Augmentation Flipping Flipping Rotating Permuting

leave-one-subject-out cross validation for our evaluation [48].
WISDM [31]: The Wireless Sensor Data Mining (WISDM) research
team collects this activity dataset via utilizing various mobile de-
vices such as smartphones, laptop computers, and music players.
The whole 29 volunteers participate in data collection, where
each of them wears an Android smartphone in front leg pocket
and performs 6 different types of activities including ‘‘walking’’,
‘‘upstairs’’, ‘‘standing’’, ‘‘jogging’’, ‘‘downstairs’’ and ‘‘sitting’’. The
sampling rate is constantly maintained at 20 Hz, resulting in total
10,981 samples. Referring to previous literatures [31,49], a 10-
fold cross validation is utilized for the experiments. The details
of data processing are introduced in Table 2.

Implementation details. To show relative performance gain,
we apply different training strategies (i.e., traditional supervi-
sion v.s. Contrastive Supervision) to our baseline CNN architec-
ture for comprehensive comparisons. To implement Contrastive
Supervision, we attach three auxiliary projection heads to all
intermediate layers of the CNN backbone, where each auxiliary
projection head is respectively added after the corresponding
convolutional block containing a sub-sampling layer, as shown in
Fig. 2. More specifically, the three convolutional blocks contain
64, 128, and 256 channels, respectively. As indicated above, all
auxiliary projection heads have the same structure comprised of
a GAP layer, a ReLU activation function, and a linear FC layer,
which are in charge of transforming the backbone features into
128-dimensional embedding feature vectors for Contrastive Su-
pervision. All networks are trained by SGD optimizer with a
momentum of 0.9. The initial learning rate starts at 0.01, which is
gradually decayed by a factor of 10 every 40 epochs through to-
tal 200 training epochs. Because Contrastive Supervision derives
positive or negative pairs in mini-batch, we apply varying batch
sizes (also see Table 2) on different benchmark datasets to ensure
global convergence. To comprehensively evaluate the proposed
Contrastive Supervision, we apply four popular performance met-
rics including Accuracy, F1-score, Recall, and Precision, which are
formulated as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
,

F1-score = 2 ×
Precision × Recall
Precision + Recall

,

Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
,

(7)

in which TP, FP, TN, and FN denote true positives, false pos-
itives, true negatives, and false negatives respectively [11,15,
50]. All models are implemented with PyTorch, and the code
is released at https://github.com/cheng-haha/CoS. Each model is
repeated 5 times and the average results are reported for reliable
comparison.
 s

7

Table 3
Test results on benchmark datasets.
Dataset UCI-HAR PAMAP2 UniMib-SHAR WISDM

A(%)96.33 90.34 75.13 97.21
F(%)96.39 90.52 74.78 97.21
R(%)96.41 90.62 75.15 97.21Baseline

P(%)96.62 91.59 76.26 97.42

A(%)98.00 (↑1.67) 93.22 (↑2.88) 78.83 (↑3.70) 98.89 (↑1.68)
F(%)98.00 (↑1.61) 92.97 (↑2.45) 78.30 (↑3.52) 98.88 (↑1.67)
R(%)98.01 (↑1.60) 93.04 (↑2.42) 78.83 (↑3.68) 98.88 (↑1.67)CoS

P(%)98.14 (↑1.52) 93.77 (↑2.18) 80.27 (↑4.01) 98.98 (↑1.56)
Related
works

95.41A [51]
95.75A [6]
95.38A [15]

89.96F [41]
90.40F [47]
89.30F [7]

75.65A [52]
77.03A [48]
76.39F [53]

97.20F [15]
96.44A [11]
98.23A [54]

A: Accuracy. F: F1-score. R: Recall. P: Precision.

4.2. Main results

Supervised activity classification. Table 3 summarizes our
ain results, where the Baseline denotes standard training
cheme with traditional supervised loss, while CoS denotes the
ontrastive Supervision learning scheme with additional aux-
liary projection heads. In general, it could be observed that
ur approach performs the best in all cases, which can signifi-
antly boost model performance compared to the corresponding
aseline. More specifically, its gain in UCI-HAR and PAMAP2 is
.67%/1.61%/1.60%/1.52% and 2.88%/2.45%/2.42%/2.18% in terms
f performance metrics, i.e., Accuracy/F1-score/Recall/Precision,
espectively. Benefiting from the proposed Contrastive Supervi-
ion, CoS achieves better results on UniMib-SHAR and WISDM,
hich outperforms the standard baselines with a large margin
f 3.70%/3.52%/3.68%/4.01% and 1.68%/1.67%/1.67%/1.56% in terms
f Accuracy/F1-score/Recall/Precision, respectively. The above ex-
erimental results clearly validate the effectiveness of the pro-
osed approach when implementing Contrastive Supervision for
ctivity recognition.
Decoupling contrastive loss and deep supervision on opti-
ization. Because these above results could not clearly disentan-
le the independent effects of each component on optimization,
e compare different training schemes on several benchmark
atasets by looking at their respective test error curves so as to
etter shed light on this. To ensure fair comparisons, we have
ncluded test errors for the tested backbone architecture with
or without) deep supervision and contrastive loss, respectively.
s shown in Fig. 4, for networks trained with deep supervision
lone (DS) [21], the standard cross-entropy is attached to each
ntermediate layer. Instead, for networks trained with contrastive
oss without deep supervision (Con) [46], the contrastive loss is
nly added to the last layer. In fact, once training is done, all
uxiliary branches could be removed during inference stage, and
hen both DS and CoS would have the same architecture in all
he intermediate convolutional layer and final FC layer (i.e., main
ranch). That is to say, one may discard all attached projection
eads at the end of contrastive training. As a consequence, our
nference-time model has exactly the same number of parame-
ers and FLOPs as such deeply-supervised model using the same
rchitecture. However, we highlight that there is still a clear
istinction between DS and CoS during training time: the former
rains all auxiliary branches by the standard cross-entropy loss
CE, while the latter trains them with the contrastive loss LCon.
ll the hyperparameters other than the loss functions are kept
he same for a given dataset. As indicated above, the objective of
eep supervision is to create a hidden layer representation that
an be suitable for classification, independently of the last layer.
n interesting observation is that in some cases the sole deep

upervision is not able to provide a remarkably good supervised

https://github.com/cheng-haha/CoS
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Fig. 4. Compare the test errors of different methods.
ignal for intermediate layers. In some cases, the test errors are
ven lower than those obtained by the standard training scheme
ith the final layer loss, which indicates that the traditional
upervised loss probably could not provide the best supervision
or optimizing these intermediate layers. As illustrated by test
rror curves, it can be clearly observed that using traditional deep
upervision (DS) or contrastive loss (Con) alone does not match
ur contrastive supervised loss (CoS). However, the recognition
erformance improves significantly when both are combined. On
verage, the Contrastive Supervision may lead to a considerable
rop in test errors compared to the other supervisions, which
mplies that the invariant representations learned by our method
re more beneficial for optimizing the intermediate layers.
Comparing with the state-of-the-arts. We further compare

oS with previous state-of-the-art (SOTA) HAR algorithms includ-
ng AttenSense [7] (Ma et al. 2019), CNN [6] (Ronao et al. 2016),
eep Belief Networks [54] (Alsheikh et al. 2016), HFBS [51](Dong
t al. 2021), Continuous Attention [41] (Zeng et al., 2017), and
ttention-based CNN [15] (Khan et al. 2021), etc. As shown in Ta-
le 3, it could be observed that our CoS achieves the best perfor-
ance against prior works across various networks. On UCI-HAR,
ur CoS significantly outperforms Ronao et al. [6]’s approach that
ses the same CNN architecture without additional Contrastive
upervision by 2.25%. It also surpasses Dong et al. [51]’s approach
tilizing hesitant fuzzy belief framework and Khan et al. [15]’s
pproach using CNN-induced multi-head attention by 2.59% and
.62%, respectively. In the case of PAMAP2, the CNN trained with
oS is significantly superior to the AttenSense approach proposed
y Ma et al. [7], achieving a 3.67% performance improvement.
eng et al. [41] have proposed an approach that combines Contin-
ous Temporal Attention and Continuous Sensor Attention within
n individual LSTM unit, resulting in an F1-score of 89.96%. Our
oS surpasses the second-best baseline by a margin of 3.01%
8

according to F1-score. Comparing to the strongest baseline re-
ported by Khaertdinov et al. [47] who utilize different triple
loss functions, our approach is still able to lead to an absolute
performance gain of 2.57%. In addition, our CoS method surpasses
the previous SOTA [48] using Codebook Approach with Soft Vari-
ants by a margin of 1.80% on UniMib-SHAR and a margin of
1.91% over the second-best method using an Asymmetric Residual
Neural Network [53], respectively. Similar gain could also be seen
in WISDM. On average, our CoS method leads to an accuracy
improvement of 0.66% over Alsheikh et al. [54]’s approach using
deep belief networks. It also surpasses the second-best method
reported by Zhang et al. [11] utilizing multi-head convolutional
attention by a relative performance gain of 2.45%. These results
suggest that exploiting contrastive representation may provide
an effective way for deeply-supervised learning beyond standard
supervised strategy.

Apply Contrastive Supervision to semi-supervised learning.
Current popular deep learning approaches for HAR heavily rely on
the availability and quantity of labeled data. However, as afore-
mentioned, labeling sensor data is time-consuming and labor-
intensive. Time series sensor data annotation is often difficult
and costly to curate, and as a result direct application of deep
models to human behavior analysis tends to drastically overfit
due to the lack of labeled sensor data. Hence, to overcome such
limitations, we are motivated to explore semi-supervised learning
for improving data efficiency and performance of deep models
with limited labeled data. To this end, we propose to extend
the fully-supervised contrastive approach to the semi-supervised
setting, that combines the power of data-efficient contrastive-
supervised feature learning via applying contrastive loss in dif-
ferent depths, hence being more effective in leveraging label
information. Following the common practice in semi-supervised
learning paradigm, we conduct experiments with a small portion
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Fig. 5. Experiment results in the semi-supervised setting.
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f labeled data and a large portion of unlabeled data to evalu-
te how effective our CoS method improves model performance
ith limited labeled data. We investigate the effectiveness of our
roposed method in a semi-supervised HAR scenario, by training
he baseline model with 1%, 5%, 20%, and 40% of the randomly
elected activity samples from training set. Fig. 5 presents the
omparison results of our CoS along with the semi-supervision
nder the aforementioned settings, where there are two main
bservations: (1) Our CoS would lead to a consistent performance
ain along all the ratios of labeled data. (2) The performance
ap brought by our CoS tends to broaden when there are fewer
abeled samples. In particular, it can be clearly observed that our
oS (red curves) achieves significantly higher accuracy when us-
ng only 1% of labeled data, while traditional supervised training
purple curves) performs much worse due to limited labeled data,
hich indicates that such contrastive learning is very effective in
pplying smaller labeled data to supervise these hidden layers.
verall, excellent performance can be obtained, demonstrating
he effectiveness of our CoS in the semi-supervised setting, which
onsistently surpasses the supervised-only baselines with 1%, 5%,
0%, and 40% labeled data by a large margin on all four bench-
arks. For instance, it can be clearly observed that our CoS (red
urves) achieves significantly higher accuracy when using only
% of labeled data (e.g., relative 6.33%, 16.62%, 6.76%, and 7.73%
erformance gains), while traditional supervised training (purple
urves) performs much worse due to limited labeled data, which
ndicates that such contrastive learning is very effective in ap-
lying smaller labeled data to supervise these hidden layers. Our
oS with 5% labeled data obtains comparable accuracy compared
o the supervised-only baseline trained with 100% labeled data on
AMAP2 dataset. The results confirm the data-efficiency of CoS in
he semi-supervised HAR scenario.
9

4.3. Ablation study

The effect of varying network depth. In fact, one could find
large number of possible combinations for hyper-parameters in
uch an experiment setting. Based on an idea of greedy-wise tun-
ng, we increase the number of layers from two to six (i.e., layer-
wo, layer-three, layer-four, layer-five, layer-six) to access the
mpact of varying network depth. We first compare our CoS with
he corresponding baseline on PAMAP2 and WISDM by analyzing
he effect of increasing the number of layers on recognition accu-
acy. As illustrated in Fig. 6, it can be seen that adding more layers
oes not always translate into performance improvement, where
here is a non-monotonic trend according to recognition accuracy
s the number of layers is increased. The performance gain from
ayer-three to layer-four is almost negligible. In particular, adding
he fifth and sixth layer even results in a considerable decrease
n accuracy from previous layer, which indicates that an over-
itting phenomenon occurs. Comparing to the baseline, as well
s the aforementioned Con and DS, one can find that attaching
ontrastive Supervision to all intermediate layers could lead to a
onsistent and significant performance gain at different depths.
ne can argue that the CoS with time series data augmentation
ight be playing a regulating role in helping to alleviate over-

itting problem caused by limited activity data, which allows the
etwork to learn more discriminative features at larger depths.
he figures indicate that there is a steady increase in accuracy as
he number of layers is increased, and the accuracy improvement
nly tends to saturate when the number of layers is greater than
. Though a larger model capacity is generally more beneficial,
ur ablations analyses suggest that a proper network capacity
hould be layer-specific for activity classification in case of lim-
ted data, which agrees well with previous observation reported
n Ronao et al.’s literature [6].
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Fig. 6. Performance comparisons at different network depths.

Where to place contrastive loss? Since our CoS can be em-
ployed at different layers of a whole neural network, where to add
contrastive loss along the network remain a critical problem. To
address this issue, we perform extensive experiments on UniMib-
HAR dataset to analyze the effect of auxiliary projection heads by
attaching them to at most three different intermediate layers and
training each model independently, as illustrated in Fig. 7. Table 4
presents the corresponding results, from which there are three
main observations: (1) Two or three auxiliary projection heads
are able to achieve larger accuracy gain than only one auxiliary
projection head; (2) Adding a single auxiliary projection head
to a relatively deep layer is better than adding it to a shallow
layer, which is in well line with previous observation [22]. One
can observe a gradual increase in accuracy along with the in-
creased number of auxiliary projection heads. Intuitively, if too
less Contrastive Supervision is applied, it may not fully exploit
Contrastive Supervision to learn invariant representations from
time series data augmentation. Referring to the above results, we
choose to attach auxiliary projection heads to all intermediate
layers, where shallow layers are in charge of learning low and
local activity features while deep layers are in charge of learning
global and high-level activity features. In such a way, our CoS can
combine both shallow and deep layer outputs from Contrastive
Supervision to improve final activity recognition performance.

The impact of hyper-Parameter α. We perform ablation anal-
ysis on several HAR benchmarks to explore the impact of the key
hyper-parameter α, that is used to balance the trade-off between
supervised and contrastive losses. Table 5 ablates the effect of
α on the overall performance, which indicates a non-monotonic
variation trend. In fact, α reflects the weights of contrastive loss
included in the overall loss function. As α is set to 0, our model
will degenerate to the standard CNN architecture trained by the
final layer loss. On average, our approach always outperforms
the corresponding baseline when tuning the ratio α > 0, which
shows the necessity of contrastive loss. For example, setting α =
10
Fig. 7. Visualization for using CoS in the intermediate layers. (a) denotes
utilizing CoS in a single layer. Similarly, (b), (c) respectively represent CoS
applied to two or three intermediate layers.

Table 4
Apply CoS at different depths. 1st, 2nd, and 3rd represent the first, sec-
ond, and third layers of the whole network, respectively. The ✓ in the
each column indicates that the Contrastive Supervision is applied after the
corresponding layer.

1st 2nd 3rd Accuracy (%)

Base – – – 75.13

✓ – – 75.40
– ✓ – 76.08
– – ✓ 77.59
✓ ✓ – 75.48
✓ – ✓ 78.25
– ✓ ✓ 77.83

Placement

✓ ✓ ✓ 78.83

Table 5
Effect of hyperparameter α.

UCI-HAR PAMAP2 UniMib-SHAR WISDM

1.0 97.33 92.51 78.27 98.88
Base 96.33 90.34 75.13 97.21
5.0 98.00 92.98 77.71 98.59
10.0 97.79 93.02 78.83 98.64
15.0 97.87 93.22 78.64 98.89
20.0 97.63 93.14 78.13 98.89

1, one can consider that Contrastive Supervision employed at all
intermediate layers and standard supervision employed at the
last layer play equal roles in the optimizing process. It can be
clearly seen that increasing the percentage of contrastive loss
tends to improve model performance, but too large percentage
would harm the performance. The optimal selection of α could
be dynamically adjusted according to activity recognition perfor-
mance on validation set. In most cases, the contrastive loss will be
allocated higher weights than the traditional loss at the last layer,
which ensures that such contrastive loss always plays a dominant
role compared to the final layer loss.

Sensitivity analysis on temperature factor τ. We perform
sensitivity analysis on UCI-HAR dataset to investigate the effect
of a temperature hyper-parameter τ on the classification perfor-
mance of Contrastive Supervision, which plays a dominant part
in controlling the strength of penalties on hard negative samples.
As one can see from above Eq. (3), the contrastive loss scales
inversely as the temperature τ varies. Because extremely small
temperature value (e.g., τ = 0.001) might make the model
hard to converge due to numerical instability, we only show the
effect of temperature scalar τ that is varied between 0.01 and 1.0
while keeping all other hyperparameters fixed. It can be found
that Fig. 8 presents an inverse U shape, which indicates that our
model is less sensitive to its value when τ ≤ 0.5 while it is
more sensitive to the value that is larger than 0.5. On the whole,
relatively low temperature benefits Contrastive Supervision more
than high ones. Unsurprisingly, the temperature between 0.1 and
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Fig. 8. Effect of temperature factor τ .

0.5 can achieve better performance, while an extremely high
temperature leads to a considerable accuracy drop, i.e., subop-
timal performance. This is due to that contrastive loss caused
by extremely high temperature tends to be less sensitive to
hard negative samples and degenerate model performance, which
is in well line with previous observations in contrastive learn-
ing [46,55]. Without loss of generality, we keep the temperature
value within a reasonable interval (i.e., τ = 0.12) for all our
xperiments.
11
The effect of data augmentation. As shown in Fig. 3, to
learn invariant representations from different views, the Con-
trastive Supervision needs to construct positive pairs by applying
different data augmentations for the same activity twice in an
instance level. We empirically explore how various time series
data augmentations (as listed in Table 1) affect the final perfor-
mance of our Contrastive Supervision approach. Fig. 9 shows the
obtained results on UCI-HAR and UniMib-SHAR datasets respec-
tively, where Aug1 denotes the data augmentation applied for the
first branch, while Aug2 denotes the data augmentation applied
for the second branch. To provide a comprehensive evaluation, we
sometimes still use raw sensor samples in one branch while only
performing data augmentation in the other branch, or vice versa.
As shown in Fig. 9, one can find that there is quite a big variation
between performance, where there is no unique data augmenta-
tion that consistently outperforms others. In most cases, using a
single augmentation performs even better than using both. For
example, using Flipping and Rotating alone can achieve the best
erformance on UCI-HAR and UniMib-SHAR datasets respectively,
hich suggests that combining two augmentations at the same
ime might potentially cause the distortion of an activity instance
nd fail to preserve its original semantic meaning for activity
lassification. Unlike image data, it should be cautioned that the
ariance caused by the time series data augmentation could not
e taken for granted. In fact, how to find a proper time series data
ugmentation automatically still remains a critical challenge in
ontrastive learning [16,17].
Confusion matrices and visualizing analysis. To demon-

trate the discriminative power of Contrastive Supervision, we
Fig. 9. Different data augmentation techniques.
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Fig. 10. Confusion matrix for PAMAP2 dataset.

urther compute the confusion matrices of 12 studied activities
n PAMAP2 dataset, which will be more informative based on
detailed analysis of all caused errors or confusions between
ifferent activity classes. Fig. 10 presents the confusion matrices
f the CNN trained by Contrastive Supervision (bottom panel)
nd traditional supervision (top panel), respectively, where each
lement along the main diagonal line denotes the number of cor-
ectly recognized activities (higher is better), while the remaining
ff-diagonal elements denote the number of misclassifications.
y inspecting both diagonal and off-diagonal elements, one can
learly observe that some activity categories are more difficult
o distinguish than other ones. For example, as shown in the
eft panel, since ‘‘Standing’’, ‘‘Ironing’’, and ‘‘Sitting’’ have high
onfusion with each other, there are only 55 samples belonging
o the ‘‘Standing’’ category that have been correctly predicted
y traditional supervision. In contrast, our method can further
mprove the number of correct predictions to reach a higher
evel, (i.e., 70), as illustrated in the right panel. In order to obtain
better understanding about how the Contrastive Supervision
12
Table 6
Test F1-score on PAMAP2 Dataset.
Model Plain baseline Plain baseline + CoS

LSTM-Baseline [14] 75.60 81.87
DeepConvLSTM [13] 74.80 86.42
Att. model [57] 87.50 89.03
CAE [58] 82.90 91.48
Attend-Discriminate [59] 90.80 91.93

succeeds, we provide a T-SNE [56] visualization in the embedded
feature space, as shown in Fig. 11. Compared to the baseline
method, it can be seen that the embedding learned with our Con-
trastive Supervision indeed shows better activity class separation,
which presents a reasonable distribution being locally clustered
and globally separated between those similar activities.

Integration with other modern architectures. To evaluate
the generalization performance of our approach and whether it
is compatible with what were done in prior works, we further
test our CoS method with several popular backbone networks on
PAMAP2 dataset. Our main intention is to evaluate the benefit
when embedding our CoS into the corresponding architectures,
so that the relative performance gain could be attributed to in-
variant feature representations caused by contrastive supervision.
Here we apply CoS uniquely on several top-performing published
models, and modify them similarly as in our CNN classification
experiments. LSTM-Baseline [14]: a two-layer LSTM network
where we only add the CoS block after the LSTM block/stage of
baseline; DeepConvLSTM [13]: a hybrid model of CNN and LSTM
for activity recognition, that is comprised of four convolutional
layers and two LSTM layers to learn both spatial and temporal
dependency, where the CoS block is applied after each interme-
diate convolutional layer, as well as the final LSTM block/stage;
Att. Model [57]: it can be regarded as an attention-based version
of DeepConvLSTM, which embeds an attention mechanism into
the LSTM network so as to determine the ‘important’ time step,
where CoS is applied after each convolutional layer and the
attention module; CAE [58]: an autoencoder network consists of
an encoder and a decoder bridged by a bottleneck layer, where
the feature vector of the encoder is mapped onto the latent
feature space via this bottleneck layer. The encoder includes four
convolutional blocks, and the decoder employs four deconvo-
lution blocks in sequence to reconstruct the original input by
reversing the encoding process. Here CoS is employed after each
convolutional block, which is then applied to the latent repre-
sentation vectors obtained from the encoder without attaching
projection head; Attend and Discriminate [59]: a novel cross-
channel interaction encoder, which incorporates a self-attention
mechanism to learn the latent interactions between multiple
sensor channels so as to exploit different capabilities of sensor
modalities in capturing and encoding activities. CoS is applied
after each convolutional layer and an attention-based GRU en-
coder to enhance the feature representation. Table 6 reports the
results by comparing LSTM-Baseline [14], DeepConvLSTM [13],
Att. Model [57], CAE [58], Attend and Discriminate [59] with their
CoS counterparts on the PAMAP2 validation set, respectively. The
baseline numbers are taken from the referenced papers [13,14,
57–59]. To enable a fair comparison, we also re-implement all
models using contrastive supervision in the same setting re-
produced from previous works for HAR. It can be seen that
incorporating our time series data augmentation strategies into
contrastive supervision could consistently improve the results
further over the supervised-only counterparts, and our CoS is
capable of benefiting other network architectures based on the
F1-score metric. It surpasses the previous state-of-the-art models,
which leads to relative performance gains of 6.27%, 11.62%, 1.53%,
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Fig. 11. T-SNE visualization in the feature embedding space. Different colors represent different activity categories.
Fig. 12. Model deployment.
8.58%, and 1.13% on this HAR task, providing evidence that our
CoS block can perform well on different models.

Actual Implementation. The inference latency would be an
important factor in deploying a deep network for activity recog-
nition. To provide an accurate enough estimation, we evaluate ac-
tual runtime of activity inference on a resource-restrained mobile
device beyond considering an indirect metric, i.e., FLOPs alone.
Since PyTorch currently can support deploying deep learning
models for Raspberry Pi 4, this work is all tested with Raspberry Pi
4 Model B equipped with Quad-Core Cortex-A72 (ARM v8) 64-bit
SoC@1.5 GHz and 4 GB LPDDR4 SDRAM. Following the standard
workflow, we first train our backbone network with and without
Contrastive Supervision respectively on WISDM dataset, and then
load two trained PyTorch models and use them to execute activity
inference. For quantifying inference time, an application program
is written in Python language and its main user interface is
shown in Fig. 12, in which an activity label highlighted in red
color indicates the obtained prediction result. The time library in
Python is used to measure inference time. Because the variance of
the runtime can be significant, it is essential to run the network
over plenty of activity examples and then average the results
(400 examples can be a good number). The mean and variance
of the measurements can be seen in Fig. 13, which indicates that
13
our Contrastive Supervision can enhance the abstraction ability
of CNNs without incurring extra inference-time cost.

5. Conclution

In this work, we present a generic Contrastive Supervision
approach to tackle various time series data augmentations and
learn the hierarchical augmentation invariance at different depths
of neural network. Experiments on several activity recognition
benchmarks demonstrate that the proposed method leads to a
consistent and significant performance boost in supervised and
semi-supervised settings. Detailed ablation analyses are con-
ducted to study the effectiveness of each component. By com-
puting multiple contrastive losses at different intermediate layers
of backbone network, we show that deeply supervised learning
can help contrastive loss to realize better fusion of low-level and
high-level features in sensor data, which strongly suggests that
attaching contrastive loss to intermediated layers could prevent
the augmentation induced information loss. In addition, to guide
the choice of augmentations, we systematically analyze the effect
of data augmentations in our proposed method. Actual imple-
mentation is run on an embedded platform, which indicates that
our method does not incur extra inference-time cost. We hope
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ur work may motivate other researchers to shed light on how
uch contrastive loss helps deep neural works to improve the
eature quality in connection with sensor data for downstream
ctivity recognition tasks.
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